Skip to main content

Community Detection in Edge-Labeled Graphs

  • Conference paper
  • First Online:
Discovery Science (DS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13601))

Included in the following conference series:

  • 1120 Accesses

Abstract

Finding dense communities in networks is a widely-used tool for analysis in graph mining. A popular choice for finding such communities is to find subgraphs with a high average degree. While useful, interpreting such subgraphs may be difficult. On the other hand, many real-world networks have additional information, and we are specifically interested in networks that have labels on edges. In this paper, we study finding dense subgraphs that can be explained with the labels on edges. More specifically, we are looking for a set of labels so that the induced subgraph has a high average degree. There are many ways to induce a subgraph from a set of labels, and we study two cases: First, we study conjunctive-induced dense subgraphs, where the subgraph edges need to have all labels. Secondly, we study disjunctive-induced dense subgraphs, where the subgraph edges need to have at least one label. We show that both problems are NP-hard. Because of the hardness, we resort to greedy heuristics. We show that we can implement the greedy search efficiently: the respective running times for finding conjunctive-induced and disjunctive-induced dense subgraphs are in \({{\mathcal {O}}\left( p \log k\right) }\) and \({{\mathcal {O}}\left( p \log ^2 k\right) }\), where p is the number of edge-label pairs and k is the number of labels. Our experimental evaluation demonstrates that we can find the ground truth in synthetic graphs and that we can find interpretable subgraphs from real-world networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://version.helsinki.fi/dacs.

  2. 2.

    https://www.cs.cmu.edu/~./enron/.

  3. 3.

    https://www.cs.cornell.edu/projects/kddcup/datasets.html.

  4. 4.

    https://github.com/chriskal96/physics-theory-citation-network.

  5. 5.

    https://www.aminer.org/citation.

  6. 6.

    https://developer.twitter.com/en/docs/twitter-api.

References

  1. Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45995-2_51

    Chapter  Google Scholar 

  2. Angel, A., Koudas, N., Sarkas, N., Srivastava, D., Svendsen, M., Tirthapura, S.: Dense subgraph maintenance under streaming edge weight updates for real-time story identification. VLDB J. 23(2), 175–199 (2014)

    Article  Google Scholar 

  3. Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social network analysis: the maximum \(k\)-plex problem. Oper. Res. 59(1), 133–142 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonchi, F., Khan, A., Severini, L.: Distance-generalized core decomposition. In: SIGMOD, pp. 1006–1023 (2019)

    Google Scholar 

  5. Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: FOCS, pp. 617–626 (2002)

    Google Scholar 

  6. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)

    Article  MATH  Google Scholar 

  7. Charikar, M.: Greedy approximation algorithms for finding dense components in a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 84–95. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44436-X_10

    Chapter  MATH  Google Scholar 

  8. Du, X., Jin, R., Ding, L., Lee, V.E., Thornton Jr, J.H.: Migration motif: a spatial-temporal pattern mining approach for financial markets. In: KDD, pp. 1135–1144 (2009)

    Google Scholar 

  9. Fratkin, E., Naughton, B.T., Brutlag, D.L., Batzoglou, S.: Motifcut: regulatory motifs finding with maximum density subgraphs. Bioinformatics 22(14), e150–e157 (2006)

    Article  Google Scholar 

  10. Galbrun, E., Gionis, A., Tatti, N.: Overlapping community detection in labeled graphs. DMKD 28(5), 1586–1610 (2014)

    MathSciNet  Google Scholar 

  11. Goldberg, A.V.: Finding a maximum density subgraph. University of California Berkeley Technical report (1984)

    Google Scholar 

  12. Håstad, J.: Clique is hard to approximate within \(n^{1 - \epsilon }\). In: FOCS, pp. 627–636 (1996)

    Google Scholar 

  13. Langston, M.A., et al.: A combinatorial approach to the analysis of differential gene expression data. In: Shoemaker, J.S., Lin, S.M. (eds.) Methods of Microarray Data Analysis, pp. 223–238. Springer, Boston (2005). https://doi.org/10.1007/0-387-23077-7_17

    Chapter  Google Scholar 

  14. Li, F., Klette, R.: Convex hulls in the plane. In: Li, F., Klette, R. (eds.) Euclidean Shortest Paths: Exact or Approximate Algorithms, pp. 93–125. Springer, London (2011). https://doi.org/10.1007/978-1-4471-2256-2_4

    Chapter  MATH  Google Scholar 

  15. Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13(2), 161–173 (1979)

    Article  Google Scholar 

  16. Overmars, M.H., Van Leeuwen, J.: Maintenance of configurations in the plane. J. Comput. Syst. Sci. 23(2), 166–204 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pool, S., Bonchi, F., van Leeuwen, M.: Description-driven community detection. TIST 5(2), 1–28 (2014)

    Article  Google Scholar 

  18. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  19. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: KDD, pp. 990–998 (2008)

    Google Scholar 

  20. Tatti, N.: Density-friendly graph decomposition. TKDD 13(5), 1–29 (2019)

    Article  MathSciNet  Google Scholar 

  21. Tsourakakis, C.E.: The k-clique densest subgraph problem. In: WWW, pp. 1122–1132 (2015)

    Google Scholar 

  22. Uno, T.: An efficient algorithm for solving pseudo clique enumeration problem. Algorithmica 56(1), 3–16 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the Academy of Finland projects MALSOME (343045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iiro Kumpulainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumpulainen, I., Tatti, N. (2022). Community Detection in Edge-Labeled Graphs. In: Pascal, P., Ienco, D. (eds) Discovery Science. DS 2022. Lecture Notes in Computer Science(), vol 13601. Springer, Cham. https://doi.org/10.1007/978-3-031-18840-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18840-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18839-8

  • Online ISBN: 978-3-031-18840-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics