Skip to main content

Explaining Crash Predictions on Multivariate Time Series Data

  • Conference paper
  • First Online:
Discovery Science (DS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13601))

Included in the following conference series:

  • 968 Accesses

Abstract

In Assicurazioni Generali, an automatic decision-making model is used to check real-time multivariate time series and alert if a car crash happened. In such a way, a Generali operator can call the customer to provide first assistance. The high sensitivity of the model used, combined with the fact that the model is not interpretable, might cause the operator to call customers even though a car crash did not happen but only due to a harsh deviation or the fact that the road is bumpy. Our goal is to tackle the problem of interpretability for car crash prediction and propose an eXplainable Artificial Intelligence (XAI) workflow that allows gaining insights regarding the logic behind the deep learning predictive model adopted by Generali. We reach our goal by building an interpretable alternative to the current obscure model that also reduces the training data usage and the prediction time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Details can not be disclosed due to company policies.

  2. 2.

    The subsequence extraction is performed using the default implementation parameters for MR-SEQL and the heuristic proposed in [2] for LTS.

  3. 3.

    All the models are trained using the default library implementation parameters: Scikit-learn for dt, rf, XGBoost for xgb, LightGBM for lgb, CatBoost for cat.

References

  1. Ba, Y., et al.: Crash prediction with behavioral and physiological features for advanced vehicle collision avoidance system. TR_C 74, 22–33 (2017)

    Google Scholar 

  2. Grabocka, J., et al.: Learning time-series shapelets. In: KDD. ACM (2014)

    Google Scholar 

  3. Guidotti, R., et al.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2019)

    Article  Google Scholar 

  4. Guidotti, R., et al.: Crash prediction and risk assessment with individual mobility networks. In: MDM. IEEE (2020)

    Google Scholar 

  5. Kweon, Y.J., et al.: Development of crash prediction models with individual vehicular data. TR_C 19(6), 1353–1363 (2011)

    Google Scholar 

  6. LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  7. Lin, J., et al.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Discov. 15, 107–144 (2007)

    Article  MathSciNet  Google Scholar 

  8. Lines, J., et al.: A shapelet transform for time series classification. In: KDD, KDD 2012, pp. 289–297. ACM, New York (2012)

    Google Scholar 

  9. Lord, D., et al.: The statistical analysis of crash-frequency data: a review and assessment of methodological alternatives. TR_A 44(5), 291–305 (2010)

    Google Scholar 

  10. Lundberg, S.M., et al.: A unified approach to interpreting model predictions. In: NIPS, pp. 4768–4777 (2017)

    Google Scholar 

  11. Lundberg, S.M., et al.: From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2(1), 56–67 (2020)

    Article  Google Scholar 

  12. Mannering, F.L., et al.: Analytic methods in accident research: methodological frontier and future directions. Anal. Methods Accid. Res. 1, 1–22 (2014)

    Google Scholar 

  13. Nanni, M., et al.: City indicators for geographical transfer learning: an application to crash prediction. GeoInformatica 1–32 (2022)

    Google Scholar 

  14. Nguyen, T.L., et al.: Interpretable time series classification using linear models and multi-resolution symbolic representations. DAMI 33(4), 1183–1222 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Salim, F.D., et al.: Collision pattern modeling and real-time collision detection at road intersections. In: ITSC, pp. 161–166. IEEE (2007)

    Google Scholar 

  16. Selvaraju, R.R., et al.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV, pp. 618–626 (2017)

    Google Scholar 

  17. Sundararajan, M., et al.: Axiomatic attribution for deep networks. In: ICML. Proceedings of Machine Learning Research, vol. 70, pp. 3319–3328. PMLR (2017)

    Google Scholar 

  18. Tan, P.N.: Introduction to Data Mining. Pearson Education India (2018)

    Google Scholar 

  19. Wang, J., et al.: Real-time driving danger level prediction (2010)

    Google Scholar 

  20. Wang, Y., et al.: ML methods for driving risk. In: EM-GIS. ACM (2017)

    Google Scholar 

  21. Ye, L., et al.: Time series shapelets: a new primitive for data mining (2009)

    Google Scholar 

  22. Zantalis, F., et al.: A review of machine learning and IoT in smart transportation. Future Internet 11(4), 94 (2019)

    Article  Google Scholar 

  23. Ziebinski, A., et al.: Review of advanced driver assistance systems (ADAS) (2017)

    Google Scholar 

Download references

Acknowledgment

This work has been partially supported by the European Community Horizon 2020 programme under the funding schemes: G.A. 871042 SoBigData++, G.A. 952026 HumanE AI Net, and G.A. 834756 XAI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Guidotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spinnato, F., Guidotti, R., Nanni, M., Maccagnola, D., Paciello, G., Farina, A.B. (2022). Explaining Crash Predictions on Multivariate Time Series Data. In: Pascal, P., Ienco, D. (eds) Discovery Science. DS 2022. Lecture Notes in Computer Science(), vol 13601. Springer, Cham. https://doi.org/10.1007/978-3-031-18840-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18840-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18839-8

  • Online ISBN: 978-3-031-18840-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics