Skip to main content

Semi-supervised Change Point Detection Using Active Learning

  • Conference paper
  • First Online:
Discovery Science (DS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13601))

Included in the following conference series:

Abstract

The goal of change point detection (CPD) is to find abrupt changes in the underlying state of a time series. Currently, CPD is typically tackled using fully supervised or completely unsupervised approaches. Supervised methods exploit labels to find change points that are as accurate as possible with respect to these labels, but have the drawback that annotating the data is a time-consuming task. In contrast, unsupervised methods avoid the need for labels by making assumptions about how changes in the underlying statistics of the data correlate with changes in a time series’ state. However, these assumptions may be incorrect and hence lead to identifying different change points than a user would annotate. In this paper, we propose an approach in between these two extremes and present AL-CPD, an algorithm that combines active and semi-supervised learning to tackle CPD. AL-CPD asks directed queries to obtain labels from the user and uses them to eliminate incorrectly detected change points and to search for new change points. Using an empirical evaluation on both synthetic and real-world datasets, we show that our algorithm finds more accurate change points compared to existing change point detection methods.

A. De Brabandere and Z. Cao—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Because the label propagation algorithm performs poorly when given high-dimensional data, we first reduce the dimensionality of the feature space using a principal component analysis (PCA) transformation (setting the number of components such that the explained variance is at least 0.9) and standardise the PCA components.

References

  1. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point detection. Knowl. Inf. Syst. 51(2), 339–367 (2017)

    Article  Google Scholar 

  2. Appel, U., Brandt, A.V.: Adaptive sequential segmentation of piecewise stationary time series. Inf. Sci. 29(1), 27–56 (1983)

    Article  MATH  Google Scholar 

  3. Basseville, M., Nikiforov, I.V., et al.: Detection of abrupt changes: theory and application, vol. 104, prentice Hall Englewood Cliffs (1993)

    Google Scholar 

  4. Breiman, L.: Random for. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  5. Chang, W.C., Li, C.L., Yang, Y., PĂłczos, B.: Kernel change-point detection with auxiliary deep generative models. arXiv preprint arXiv:1901.06077 (2019)

  6. De Brabandere, A., Op De Beéck, T., Hendrickx, K., Meert, W., Davis, J.: TSFuse: Automated feature construction for multiple time series data. Mach. Learn. (2022). https://doi.org/10.1007/s10994-021-06096-2

  7. De Brabandere, A., Robberechts, P., Op De Beéck, T., Davis, J.: Automating feature construction for multi-view time series data. In: ECMLPKDD Workshop on Automating Data Science (2019)

    Google Scholar 

  8. De Ryck, T., De Vos, M., Bertrand, A.: Change point detection in time series data using autoencoders with a time-invariant representation. IEEE Trans. Signal Process. 69, 3513–3524 (2021)

    Article  MATH  Google Scholar 

  9. Deldari, S., Smith, D.V., Sadri, A., Salim, F.: Espresso: entropy and shape aware time-series segmentation for processing heterogeneous sensor data. Proc. ACM on Interact. Mobile, Wearable Ubiquitous Technol. 4(3), 1–24 (2020)

    Article  Google Scholar 

  10. Desobry, F., Davy, M., Doncarli, C.: An online kernel change detection algorithm. IEEE Trans. Signal Process. 53(8), 2961–2974 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feuz, K.D., Cook, D.J., Rosasco, C., Robertson, K., Schmitter-Edgecombe, M.: Automated detection of activity transitions for prompting. IEEE Trans. Human-Mach. Syst. 45(5), 575–585 (2014)

    Article  Google Scholar 

  12. Gharghabi, S., et al.: Domain agnostic online semantic segmentation for multi-dimensional time series. Data Min. Knowl. Disc. 33(1), 96–130 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kawaguchi, N.,et al.: HASC2011corpus: Towards the common ground of human activity recognition. In: Proceedings of the 13th International Conference on Ubiquitous Computing, pp. 571–572 (2011)

    Google Scholar 

  14. Kawahara, Y., Sugiyama, M.: Sequential change-point detection based on direct density-ratio estimation. Stat. Analysis Data Mining: ASA Data Sci. J. 5(2), 114–127 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, S., Yamada, M., Collier, N., Sugiyama, M.: Change-point detection in time-series data by relative density-ratio estimation. Neural Netw. 43, 72–83 (2013)

    Article  MATH  Google Scholar 

  16. Matsubara, Y., Sakurai, Y., Faloutsos, C.: Autoplait: Automatic mining of co-evolving time sequences. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of data, pp. 193–204 (2014)

    Google Scholar 

  17. Munir, M., Siddiqui, S.A., Dengel, A., Ahmed, S.: Deepant: a deep learning approach for unsupervised anomaly detection in time series. Ieee Access 7, 1991–2005 (2018)

    Article  Google Scholar 

  18. Oh, S.M., Rehg, J.M., Balch, T., Dellaert, F.: Learning and inferring motion patterns using parametric segmental switching linear dynamic systems. Int. J. Comput. Vision 77(1), 103–124 (2008)

    Article  Google Scholar 

  19. Pedregossa, F., et al.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile phones to determine transportation modes. ACM Trans. Sensor Netw. (TOSN) 6(2), 1–27 (2010)

    Article  Google Scholar 

  21. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015). https://doi.org/10.1109/CVPR.2015.7298682

  22. Zhang, R., Hao, Y., Yu, D., Chang, W.C., Lai, G., Yang, Y.: Correlation-aware unsupervised change-point detection via graph neural networks (2020)

    Google Scholar 

  23. Zhou, D., Bousquet, O., Lal, T., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Advances in neural information processing systems vol. 16 (2003)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Research Foundation Flanders (FWO) under TBM grant number T004716N, by the Flemish government under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme, and by VLAIO ICON-AI CONSCIOUS (HBC.2020.2795).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne De Brabandere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Brabandere, A., Cao, Z., De Vos, M., Bertrand, A., Davis, J. (2022). Semi-supervised Change Point Detection Using Active Learning. In: Pascal, P., Ienco, D. (eds) Discovery Science. DS 2022. Lecture Notes in Computer Science(), vol 13601. Springer, Cham. https://doi.org/10.1007/978-3-031-18840-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18840-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18839-8

  • Online ISBN: 978-3-031-18840-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics