Abstract
Statistical relational artificial intelligence, StaRAI for short, focuses on combining reasoning in uncertain environments with reasoning about individuals and relations in those environments. An important concept in StaRAI is indistinguishability, where groups of individuals behave indistinguishably in relation to each other in an environment. This indistinguishability manifests itself in symmetries in a propositional model and can be encoded compactly using logical constructs in relational models. Lifted inference then exploits indistinguishability for efficiency gains. This article showcases how to encode indistinguishability in models using logical constructs and highlights various ways of using indistinguishability during probabilistic inference.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting symmetries for scaling loopy belief propagation and relational training. Mach. Learn. 92(1), 91–132 (2013)
Braun, T.: Rescued from a sea of queries: exact inference in probabilistic relational models. Ph.D. thesis, University of Lübeck (2020)
Braun, T., Gehrke, M., Lau, F., Möller, R.: Lifting in multi-agent systems under uncertainty. In: UAI-22 Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, pp. 1–8. AUAI Press (2022)
Braun, T., Möller, R.: Preventing groundings and handling evidence in the lifted junction tree algorithm. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds.) KI 2017. LNCS (LNAI), vol. 10505, pp. 85–98. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67190-1_7
Braun, T., Möller, R.: Counting and conjunctive queries in the lifted junction tree algorithm. In: Croitoru, M., Marquis, P., Rudolph, S., Stapleton, G. (eds.) GKR 2017. LNCS (LNAI), vol. 10775, pp. 54–72. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78102-0_3
Braun, T., Möller, R.: Exploring unknown universes in probabilistic relational models. In: Liu, J., Bailey, J. (eds.) AI 2019. LNCS (LNAI), vol. 11919, pp. 91–103. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35288-2_8
De Raedt, L., Kersting, K., Natarajan, S., Poole, D.: Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. Morgan & Claypool, San Rafael (2016)
De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic prolog and its application in link discovery. In: IJCAI-07 Proceedings of 20th International Joint Conference on Artificial Intelligence, pp. 2062–2467. IJCAI Organization (2007)
Fuhr, N.: Probabilistic datalog - a logic for powerful retrieval methods. In: SIGIR-95 Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 282–290. ACM (1995)
Gehrke, M.: Taming exact inference in temporal probabilistic relational models. Ph.D. thesis, University of Lübeck (2021)
Gehrke, M., Braun, T., Möller, R.: Lifted dynamic junction tree algorithm. In: Chapman, P., Endres, D., Pernelle, N. (eds.) ICCS 2018. LNCS (LNAI), vol. 10872, pp. 55–69. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91379-7_5
Gehrke, M., Braun, T., Möller, R.: Taming reasoning in temporal probabilistic relational models. In: ECAI-20 Proceedings of the 24th European Conference on Artificial Intelligence (2020)
Gehrke, M., Braun, T., Möller, R., Waschkau, A., Strumann, C., Steinhäuser, J.: Lifted maximum expected utility. In: Koch, F., et al. (eds.) AIH 2018. LNCS (LNAI), vol. 11326, pp. 131–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12738-1_10
Gogate, V., Domingos, P.: Probabilistic theorem proving. In: UAI-11 Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, pp. 256–265. AUAI Press (2011)
Gogate, V., Jha, A., Venugopal, D.: Advances in lifted importance sampling. In: AAAI-12 Proceedings of the 26th AAAI Conference on Artificial Intelligence, pp. 1910–1916. AAAI Press (2012)
Howard, R.A., Matheson, J.E.: Influence diagrams. In: Readings on the Principles and Applications of Decision Analysis, pp. 721–762. Strategic Decision Group (1984)
Joshi, S., Kersting, K., Khardon, R.: Generalized First Order Decision Diagrams for First Order Markov Decision Processes. In: IJCAI-09 Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 1916–1921. Morgan Kaufmann Publishers Inc. (2009)
Kambhampati, S.: Synethesizing explainable behavior for human-AI collaboration. In: AAMAS-19 Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems, pp. 1–2. IFAAMAS (2019). Keynote talk
Kazemi, S.M., Kimmig, A., Van den Broeck, G., Poole, D.: New liftable classes for first-order probabilistic inference. In: NIPS-16 Advances in Neural Information Processing Systems 29, pp. 1–9 (2016)
Lee, S., Honavar, V.: On learning causal models from relational data. In: AAAI-16 Proceedings of the 30th AAAI Conference on Artificial Intelligence, pp. 3263–3270. AAAI Press (2016)
Marwitz, F., Braun, T., Möller, R.: A first step towards even more sparse encodings of probability distributions. In: ILP-21 Proceedings of the 30th International Conference on Inductive Logic Programming (2021)
Milch, B.: Probabilistic models with unknown objects. Ph.D. thesis, University of California, Berkeley (2006)
Milch, B., Zettelmoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted probabilistic inference with counting formulas. In: AAAI-08 Proceedings of the 23rd AAAI Conference on Artificial Intelligence, pp. 1062–1068. AAAI Press (2008)
Mittal, H., Bhardwaj, A., Gogate, V., Singla, P.: Domain-size aware Markov logic networks. In: AISTATS-19 Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, pp. 3216–3224. PMLR (2019)
Murphy, K.P.: Dynamic Bayesian networks: representation, inference and learning. Ph.D. thesis, University of California, Berkeley (2002)
Nath, A., Domingos, P.: A language for relational decision theory. In: Proceedings of the 6th International Workshop on Statistical Relational Learning (2009)
Nath, A., Domingos, P.: Efficient lifting for online probabilistic inference. In: AAAI-10 Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 64–69. AAAI Press (2010)
Niepert, M.: Markov chains on orbits of permutation groups. In: UAI-12 Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence, pp. 624–633. AUAI Press (2012)
Niepert, M., Van den Broeck, G.: Tractability through exchangeability: A new perspective on efficient probabilistic inference. In: AAAI-14 Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp. 2467–2475. AAAI Press (2014)
Oliehoek, F.A., Amato, C.: A Concise Introduction to Decentralised POMDPs. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28929-8
Poole, D.: First-order probabilistic inference. In: IJCAI-03 Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 985–991. IJCAI Organization (2003)
Poole, D., Buchman, D., Kazemi, S.M., Kersting, K., Natarajan, S.: Population size extrapolation in relational probabilistic modelling. In: Straccia, U., Calì, A. (eds.) SUM 2014. LNCS (LNAI), vol. 8720, pp. 292–305. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11508-5_25
Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson, London (2020)
de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In: IJCAI-05 Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp. 1319–1325. IJCAI Organization (2005)
Sanner, S., Kersting, K.: Symbolic dynamic programming for first-order POMDPs. In: AAAI-10 Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 1140–1146. AAAI Press (2010)
Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Proceedings of the 12th International Conference on Logic Programming, pp. 715–729. MIT Press (1995)
Srivastava, S., Russell, S., Ruan, P., Cheng, X.: First-order open-universe POMDPs. In: UAI-14 Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence, pp. 742–751. AUAI Press (2014)
Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination: decoupling the operators from the constraint language. J. Artif. Intell. Res. 47(1), 393–439 (2013)
Taghipour, N., Fierens, D., Van den Broeck, G., Davis, J., Blockeel, H.: Completeness results for lifted variable elimination. In: AISTATS-13 Proceedings of the 16th International Conference on Artificial Intelligence and Statistics, pp. 572–580. AAAI Press (2013)
Van den Broeck, G.: On the completeness of first-order knowledge compilation for lifted probabilistic inference. In: NIPS-11 Advances in Neural Information Processing Systems 24, pp. 1386–1394. Curran Associates, Inc. (2011)
Van den Broeck, G.: Lifted inference and learning in statistical relational models. Ph.D. thesis, KU Leuven (2013)
Van den Broeck, G., Darwiche, A.: On the complexity and approximation of binary evidence in lifted inference. In: NIPS-13 Advances in Neural Information Processing Systems 26, pp. 2868–2876. Curran Associates, Inc. (2013)
Van den Broeck, G., Davis, J.: Conditioning in first-order knowledge compilation and lifted probabilistic inference. In: AAAI-12 Proceedings of the 26th AAAI Conference on Artificial Intelligence, pp. 1961–1967. AAAI Press (2012)
Van den Broeck, G., Kersting, K., Natarajan, S., Poole, D.: An Introduction to Lifted Probabilistic Inference. MIT Press, Cambridge (2021)
Van den Broeck, G., Niepert, M.: Lifted probabilistic inference for asymmetric graphical models. In: AAAI-15 Proceedings of the 29th AAAI Conference on Artificial Intelligence, pp. 3599–3605. AAAI Press (2015)
Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted probabilistic inference by first-order knowledge compilation. In: IJCAI-11 Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 2178–2185. IJCAI Organization (2011)
Van den Broeck, G., Thon, I., van Otterlo, M., Raedt, L.D.: DTProbLog: a decision-theoretic probabilistic prolog. In: AAAI-10 Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 1217–1222. AAAI Press (2010)
Wang, Y., van Bremen, T., Wang, Y., Kuželka, O.: Domain-lifted sampling for universal two-variable logic and extensions. In: AAAI-22 Proceedings of the 36th AAAI Conference on Artificial Intelligence, pp. 10070–10079. AAAI Press (2022)
Acknowledgements
The author wishes to thank the SUM 2022 organisers for the invitation to give a tutorial on StaRAI and for the opportunity to write this article. The author also wishes to thank Marcel Gehrke and Ralf Möller for their continued collaboration and, with regards to this article, for collaborating on a tutorial at ECAI 2020, out of which this article grew.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Braun, T. (2022). A Glimpse into Statistical Relational AI: The Power of Indistinguishability. In: Dupin de Saint-Cyr, F., Öztürk-Escoffier, M., Potyka, N. (eds) Scalable Uncertainty Management. SUM 2022. Lecture Notes in Computer Science(), vol 13562. Springer, Cham. https://doi.org/10.1007/978-3-031-18843-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-18843-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18842-8
Online ISBN: 978-3-031-18843-5
eBook Packages: Computer ScienceComputer Science (R0)