Skip to main content

A Glimpse into Statistical Relational AI: The Power of Indistinguishability

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13562))

Included in the following conference series:

Abstract

Statistical relational artificial intelligence, StaRAI for short, focuses on combining reasoning in uncertain environments with reasoning about individuals and relations in those environments. An important concept in StaRAI is indistinguishability, where groups of individuals behave indistinguishably in relation to each other in an environment. This indistinguishability manifests itself in symmetries in a propositional model and can be encoded compactly using logical constructs in relational models. Lifted inference then exploits indistinguishability for efficiency gains. This article showcases how to encode indistinguishability in models using logical constructs and highlights various ways of using indistinguishability during probabilistic inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting symmetries for scaling loopy belief propagation and relational training. Mach. Learn. 92(1), 91–132 (2013)

    Article  MathSciNet  Google Scholar 

  2. Braun, T.: Rescued from a sea of queries: exact inference in probabilistic relational models. Ph.D. thesis, University of Lübeck (2020)

    Google Scholar 

  3. Braun, T., Gehrke, M., Lau, F., Möller, R.: Lifting in multi-agent systems under uncertainty. In: UAI-22 Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, pp. 1–8. AUAI Press (2022)

    Google Scholar 

  4. Braun, T., Möller, R.: Preventing groundings and handling evidence in the lifted junction tree algorithm. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds.) KI 2017. LNCS (LNAI), vol. 10505, pp. 85–98. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67190-1_7

    Chapter  Google Scholar 

  5. Braun, T., Möller, R.: Counting and conjunctive queries in the lifted junction tree algorithm. In: Croitoru, M., Marquis, P., Rudolph, S., Stapleton, G. (eds.) GKR 2017. LNCS (LNAI), vol. 10775, pp. 54–72. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78102-0_3

    Chapter  MATH  Google Scholar 

  6. Braun, T., Möller, R.: Exploring unknown universes in probabilistic relational models. In: Liu, J., Bailey, J. (eds.) AI 2019. LNCS (LNAI), vol. 11919, pp. 91–103. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35288-2_8

    Chapter  Google Scholar 

  7. De Raedt, L., Kersting, K., Natarajan, S., Poole, D.: Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. Morgan & Claypool, San Rafael (2016)

    Book  Google Scholar 

  8. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic prolog and its application in link discovery. In: IJCAI-07 Proceedings of 20th International Joint Conference on Artificial Intelligence, pp. 2062–2467. IJCAI Organization (2007)

    Google Scholar 

  9. Fuhr, N.: Probabilistic datalog - a logic for powerful retrieval methods. In: SIGIR-95 Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 282–290. ACM (1995)

    Google Scholar 

  10. Gehrke, M.: Taming exact inference in temporal probabilistic relational models. Ph.D. thesis, University of Lübeck (2021)

    Google Scholar 

  11. Gehrke, M., Braun, T., Möller, R.: Lifted dynamic junction tree algorithm. In: Chapman, P., Endres, D., Pernelle, N. (eds.) ICCS 2018. LNCS (LNAI), vol. 10872, pp. 55–69. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91379-7_5

    Chapter  Google Scholar 

  12. Gehrke, M., Braun, T., Möller, R.: Taming reasoning in temporal probabilistic relational models. In: ECAI-20 Proceedings of the 24th European Conference on Artificial Intelligence (2020)

    Google Scholar 

  13. Gehrke, M., Braun, T., Möller, R., Waschkau, A., Strumann, C., Steinhäuser, J.: Lifted maximum expected utility. In: Koch, F., et al. (eds.) AIH 2018. LNCS (LNAI), vol. 11326, pp. 131–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12738-1_10

    Chapter  Google Scholar 

  14. Gogate, V., Domingos, P.: Probabilistic theorem proving. In: UAI-11 Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, pp. 256–265. AUAI Press (2011)

    Google Scholar 

  15. Gogate, V., Jha, A., Venugopal, D.: Advances in lifted importance sampling. In: AAAI-12 Proceedings of the 26th AAAI Conference on Artificial Intelligence, pp. 1910–1916. AAAI Press (2012)

    Google Scholar 

  16. Howard, R.A., Matheson, J.E.: Influence diagrams. In: Readings on the Principles and Applications of Decision Analysis, pp. 721–762. Strategic Decision Group (1984)

    Google Scholar 

  17. Joshi, S., Kersting, K., Khardon, R.: Generalized First Order Decision Diagrams for First Order Markov Decision Processes. In: IJCAI-09 Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 1916–1921. Morgan Kaufmann Publishers Inc. (2009)

    Google Scholar 

  18. Kambhampati, S.: Synethesizing explainable behavior for human-AI collaboration. In: AAMAS-19 Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems, pp. 1–2. IFAAMAS (2019). Keynote talk

    Google Scholar 

  19. Kazemi, S.M., Kimmig, A., Van den Broeck, G., Poole, D.: New liftable classes for first-order probabilistic inference. In: NIPS-16 Advances in Neural Information Processing Systems 29, pp. 1–9 (2016)

    Google Scholar 

  20. Lee, S., Honavar, V.: On learning causal models from relational data. In: AAAI-16 Proceedings of the 30th AAAI Conference on Artificial Intelligence, pp. 3263–3270. AAAI Press (2016)

    Google Scholar 

  21. Marwitz, F., Braun, T., Möller, R.: A first step towards even more sparse encodings of probability distributions. In: ILP-21 Proceedings of the 30th International Conference on Inductive Logic Programming (2021)

    Google Scholar 

  22. Milch, B.: Probabilistic models with unknown objects. Ph.D. thesis, University of California, Berkeley (2006)

    Google Scholar 

  23. Milch, B., Zettelmoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted probabilistic inference with counting formulas. In: AAAI-08 Proceedings of the 23rd AAAI Conference on Artificial Intelligence, pp. 1062–1068. AAAI Press (2008)

    Google Scholar 

  24. Mittal, H., Bhardwaj, A., Gogate, V., Singla, P.: Domain-size aware Markov logic networks. In: AISTATS-19 Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, pp. 3216–3224. PMLR (2019)

    Google Scholar 

  25. Murphy, K.P.: Dynamic Bayesian networks: representation, inference and learning. Ph.D. thesis, University of California, Berkeley (2002)

    Google Scholar 

  26. Nath, A., Domingos, P.: A language for relational decision theory. In: Proceedings of the 6th International Workshop on Statistical Relational Learning (2009)

    Google Scholar 

  27. Nath, A., Domingos, P.: Efficient lifting for online probabilistic inference. In: AAAI-10 Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 64–69. AAAI Press (2010)

    Google Scholar 

  28. Niepert, M.: Markov chains on orbits of permutation groups. In: UAI-12 Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence, pp. 624–633. AUAI Press (2012)

    Google Scholar 

  29. Niepert, M., Van den Broeck, G.: Tractability through exchangeability: A new perspective on efficient probabilistic inference. In: AAAI-14 Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp. 2467–2475. AAAI Press (2014)

    Google Scholar 

  30. Oliehoek, F.A., Amato, C.: A Concise Introduction to Decentralised POMDPs. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28929-8

    Book  MATH  Google Scholar 

  31. Poole, D.: First-order probabilistic inference. In: IJCAI-03 Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 985–991. IJCAI Organization (2003)

    Google Scholar 

  32. Poole, D., Buchman, D., Kazemi, S.M., Kersting, K., Natarajan, S.: Population size extrapolation in relational probabilistic modelling. In: Straccia, U., Calì, A. (eds.) SUM 2014. LNCS (LNAI), vol. 8720, pp. 292–305. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11508-5_25

    Chapter  Google Scholar 

  33. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)

    Article  Google Scholar 

  34. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson, London (2020)

    MATH  Google Scholar 

  35. de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In: IJCAI-05 Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp. 1319–1325. IJCAI Organization (2005)

    Google Scholar 

  36. Sanner, S., Kersting, K.: Symbolic dynamic programming for first-order POMDPs. In: AAAI-10 Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 1140–1146. AAAI Press (2010)

    Google Scholar 

  37. Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Proceedings of the 12th International Conference on Logic Programming, pp. 715–729. MIT Press (1995)

    Google Scholar 

  38. Srivastava, S., Russell, S., Ruan, P., Cheng, X.: First-order open-universe POMDPs. In: UAI-14 Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence, pp. 742–751. AUAI Press (2014)

    Google Scholar 

  39. Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination: decoupling the operators from the constraint language. J. Artif. Intell. Res. 47(1), 393–439 (2013)

    Article  MathSciNet  Google Scholar 

  40. Taghipour, N., Fierens, D., Van den Broeck, G., Davis, J., Blockeel, H.: Completeness results for lifted variable elimination. In: AISTATS-13 Proceedings of the 16th International Conference on Artificial Intelligence and Statistics, pp. 572–580. AAAI Press (2013)

    Google Scholar 

  41. Van den Broeck, G.: On the completeness of first-order knowledge compilation for lifted probabilistic inference. In: NIPS-11 Advances in Neural Information Processing Systems 24, pp. 1386–1394. Curran Associates, Inc. (2011)

    Google Scholar 

  42. Van den Broeck, G.: Lifted inference and learning in statistical relational models. Ph.D. thesis, KU Leuven (2013)

    Google Scholar 

  43. Van den Broeck, G., Darwiche, A.: On the complexity and approximation of binary evidence in lifted inference. In: NIPS-13 Advances in Neural Information Processing Systems 26, pp. 2868–2876. Curran Associates, Inc. (2013)

    Google Scholar 

  44. Van den Broeck, G., Davis, J.: Conditioning in first-order knowledge compilation and lifted probabilistic inference. In: AAAI-12 Proceedings of the 26th AAAI Conference on Artificial Intelligence, pp. 1961–1967. AAAI Press (2012)

    Google Scholar 

  45. Van den Broeck, G., Kersting, K., Natarajan, S., Poole, D.: An Introduction to Lifted Probabilistic Inference. MIT Press, Cambridge (2021)

    Book  Google Scholar 

  46. Van den Broeck, G., Niepert, M.: Lifted probabilistic inference for asymmetric graphical models. In: AAAI-15 Proceedings of the 29th AAAI Conference on Artificial Intelligence, pp. 3599–3605. AAAI Press (2015)

    Google Scholar 

  47. Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted probabilistic inference by first-order knowledge compilation. In: IJCAI-11 Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 2178–2185. IJCAI Organization (2011)

    Google Scholar 

  48. Van den Broeck, G., Thon, I., van Otterlo, M., Raedt, L.D.: DTProbLog: a decision-theoretic probabilistic prolog. In: AAAI-10 Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 1217–1222. AAAI Press (2010)

    Google Scholar 

  49. Wang, Y., van Bremen, T., Wang, Y., Kuželka, O.: Domain-lifted sampling for universal two-variable logic and extensions. In: AAAI-22 Proceedings of the 36th AAAI Conference on Artificial Intelligence, pp. 10070–10079. AAAI Press (2022)

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank the SUM 2022 organisers for the invitation to give a tutorial on StaRAI and for the opportunity to write this article. The author also wishes to thank Marcel Gehrke and Ralf Möller for their continued collaboration and, with regards to this article, for collaborating on a tutorial at ECAI 2020, out of which this article grew.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Braun, T. (2022). A Glimpse into Statistical Relational AI: The Power of Indistinguishability. In: Dupin de Saint-Cyr, F., Öztürk-Escoffier, M., Potyka, N. (eds) Scalable Uncertainty Management. SUM 2022. Lecture Notes in Computer Science(), vol 13562. Springer, Cham. https://doi.org/10.1007/978-3-031-18843-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18843-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18842-8

  • Online ISBN: 978-3-031-18843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics