Skip to main content

CTFusion: Convolutions Integrate with Transformers for Multi-modal Image Fusion

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13534))

Included in the following conference series:

  • 2775 Accesses

Abstract

In this paper, we propose a novel pseudo-end-to-end Pre-training multi-model image fusion network, termed CTFusion, to take advantage of convolution operations and vision transformer for multi-modal image fusion. Unlike existing pre-trained models that are based on public datasets, which contain two stages of training with a single input and a fusion strategy designed manually, our method is a simple single-stage pseudo-end-to-end model that uses a dual input adaptive fusion method and can be tested directly. Specifically, the fusion network first adopts a dual dense convolution network to obtain the abundant semantic information, and then the feature map is converted to a token and fed into a multi-path transformer fusion block to model the global-local information of sources images. Finally, we obtain the fusion image by a followed convolutional neural network block. Extensive experiments have been carried out on two publicly available multi-modal datasets, experiment results demonstrate that the proposed model outperforms state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, Y.K., Huang, W.B., Sun, F.C., Xu, T.Y., Rong, Y., Huang, J.: Deep multimodal fusion by channel exchanging. In: Advances in Neural Information Processing Systems, 33 (2020)

    Google Scholar 

  2. Li, H., Wu, X.J.: DenseFuse: a fusion approach to infrared and visible images. IEEE Trans. Image Process. 28(5), 2614–2623 (2018)

    Article  MathSciNet  Google Scholar 

  3. Naidu, V.: Hybrid DDCT-PCA based multi sensor image fusion. J. Opt. 43(1), 48–61 (2014)

    Article  MathSciNet  Google Scholar 

  4. Ram Prabhakar, K., Sai Srikar, V., Babu, R.: DeepFuse: a deep unsupervised approach for exposure fusion with extreme exposure image pairs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4714–4722 (2017)

    Google Scholar 

  5. Xu, H., Ma, J., Jiang, J., Guo, X., Ling, H.: U2fusion: a unified unsupervised image fusion network. IEEE Trans. Pattern Anal. Mach. Intell. 44, 502–518 (2020)

    Article  Google Scholar 

  6. Zhang, H., Xu, H., Xiao, Y., Guo, X., Ma, J.: Rethinking the image fusion: a fast unified image fusion network based on proportional maintenance of gradient and intensity. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 12797–12804 (2020)

    Google Scholar 

  7. Li, H., Wu, X.J., Kittler, J.: MDLatLRR: a novel decomposition method for infrared and visible image fusion. IEEE Trans. Image Process. 29, 4733–4746 (2020)

    Article  Google Scholar 

  8. Ma, J., Xu, H., Jiang, J., Mei, X., Zhang, X.P.: DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion. IEEE Trans. Image Process. 29, 4980–4995 (2020)

    Article  Google Scholar 

  9. Zhang, H., Le, Z., Shao, Z., Xu, H., Ma, J.: MFF-GAN: an unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion. Inf. Fusion 66, 40–53 (2021)

    Article  Google Scholar 

  10. Hu, J., Shen, L., Sun, G., Albanie, S.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 99 (2017)

    Google Scholar 

  11. Wang, X.L., Ross, G., Abhinav, G., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  12. Ashish, V., et al.: Attention is all you need. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  13. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

    Google Scholar 

  14. Xie, E., et al.: SegFormer: simple and efficient design for semantic segmentation with transformers, in arXiv preprint arXiv:2105.15203 (2021)

  15. Prakash, A., Chitta, K., Geiger, A.: Multi-modal fusion transformer for end-to-end autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7077–7087 (2021)

    Google Scholar 

  16. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  17. Wu, H.P., et al.: CVT: Introducing convolutions to vision transformers. arXiv preprint arXiv:2103.15808 (2021)

  18. Xiao, T., Dollar, P., Singh, M., Mintun, E., Darrell, T., Girshick, R.: Early convolutions help transformers see better. In: Thirty-Fifth Conference on Neural Information Processing Systems (2021)

    Google Scholar 

  19. Islam, Md.A., Jia, S., Bruce, N.D.B.: How much position information do convolutional neural networks encode? In: International Conference on Learning Representations (2020)

    Google Scholar 

  20. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  21. Zhou, Z., Dong, M., Xie, X., Gao, Z.: Fusion of infrared and visible images for night-vision context enhancement. Appl. Opt. 55(23), 6480–6490 (2016)

    Article  Google Scholar 

  22. Mohammad, H., Masoud Amirkabiri, R.: Fast-FMI: non-reference image fusion metric. In: 2014 IEEE 8th International Conference on Application of Information and Communication Technologies (AICT), pp. 1–3 (2014)

    Google Scholar 

  23. Aslantas, V., Bendes, E.: A new image quality metric for image fusion: the sum of the correlations of differences. AEU-Int. J. Electron. Commun. 69(12), 1890–1896 (2015)

    Article  Google Scholar 

  24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  25. Shreyamsha Kumar, B.K.: Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform. SIViP 7(6), 1125–1143 (2012). https://doi.org/10.1007/s11760-012-0361-x

    Article  Google Scholar 

  26. Han, S.S., Li, H.T., Gu, H.Y., et al.: The study on image fusion for high spatial resolution remote sensing images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVII Part B 7, 1159–1164 (2008)

    Google Scholar 

  27. Kumar, B.S.: Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform. Signal Image Video Process. 7(6), 1125–1143 (2013)

    Google Scholar 

  28. Zhang, Y., Liu, Y., Sun, P., Yan, H., Zhao, X., Zhang, L.: IFCNN: a general image fusion framework based on convolutional neural network. Inf. Fusion 54, 99–118 (2020)

    Google Scholar 

  29. Li, W., Xie, Y., Zhou, H., Han, Y., Zhan, K.: Structure-aware image fusion. Optik 172, 1–11 (2018)

    Google Scholar 

  30. Ma, K., Zeng, K., Wang, Z.: Perceptual quality assessment for multi-exposure image fusion. IEEE Trans. Image Process. 24(11), 3345–3356 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Scientific Innovation 2030 Major Project for New Generation of AI under Grant 2020AAA0107300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, Z., Wang, J., Pan, Z., Wang, J., Li, Y. (2022). CTFusion: Convolutions Integrate with Transformers for Multi-modal Image Fusion. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13534. Springer, Cham. https://doi.org/10.1007/978-3-031-18907-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18907-4_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18906-7

  • Online ISBN: 978-3-031-18907-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics