Skip to main content

Gradient-Rebalanced Uncertainty Minimization for Cross-Site Adaptation of Medical Image Segmentation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13535))

Included in the following conference series:

  • 1440 Accesses

Abstract

Automatically adapting image segmentation across data sites benefits to reduce the data annotation burden in medical image analysis. Due to variations in image collection procedures, there usually exists moderate domain gap between medical image datasets from different sites. Increasing the prediction certainty is beneficial for gradually reducing the category-wise domain shift. However, uncertainty minimization naturally leads to bias towards major classes since the target object usually occupies a small portion of pixels in the input image. In this paper, we propose a gradient-rebalanced uncertainty minimization scheme which is capable of eliminating the learning bias. First, the foreground pixels and background pixels are reweighted according to the total gradient amplitude of every class. Furthermore, we devise a feature-level adaptation scheme to reduce the overall domain gap between source and target datasets, based on feature norm regularization and adversarial learning. Experiments on CT pancreas segmentation and MRI prostate segmentation validate that, our method outperforms existing cross-site adaptation algorithms by around 3% on the DICE similarity coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bateson, M., Kervadec, H., Dolz, J., Lombaert, H., Ben Ayed, I.: Source-relaxed domain adaptation for image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 490–499. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_48

    Chapter  Google Scholar 

  2. Chen, H., Wang, X., Huang, Y., Wu, X., Yu, Y., Wang, L.: Harnessing 2D networks and 3D features for automated pancreas segmentation from volumetric CT images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 339–347. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_38

    Chapter  Google Scholar 

  3. Chen, M., Xue, H., Cai, D.: Domain adaptation for semantic segmentation with maximum squares loss. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2090–2099 (2019)

    Google Scholar 

  4. Chiou, E., Giganti, F., Punwani, S., Kokkinos, I., Panagiotaki, E.: Harnessing uncertainty in domain adaptation for MRI prostate lesion segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 510–520. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_50

    Chapter  Google Scholar 

  5. Chiou, E., Giganti, F., Punwani, S., Kokkinos, I., Panagiotaki, E.: Unsupervised domain adaptation with semantic consistency across heterogeneous modalities for MRI prostate lesion segmentation. In: Albarqouni, S., et al. (eds.) DART/FAIR -2021. LNCS, vol. 12968, pp. 90–100. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87722-4_9

    Chapter  Google Scholar 

  6. Cui, W., et al.: Semi-supervised brain lesion segmentation with an adapted mean teacher model. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 554–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_43

    Chapter  Google Scholar 

  7. Degel, M.A., Navab, N., Albarqouni, S.: Domain and geometry agnostic CNNs for left atrium segmentation in 3D ultrasound. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 630–637. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_72

    Chapter  Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Dou, Q., et al.: PnP-AdaNet: plug-and-play adversarial domain adaptation network with a benchmark at cross-modality cardiac segmentation. arXiv preprint arXiv:1812.07907 (2018)

  10. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495 (2014)

  11. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv preprint arXiv:1406.2661 (2014)

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. arXiv preprint arXiv:1711.03213 (2017)

  14. Hoffman, J., Wang, D., Yu, F., Darrell, T.: FCNs in the wild: pixel-level adversarial and constraint-based adaptation. arXiv preprint arXiv:1612.02649 (2016)

  15. Hu, M., et al.: Fully test-time adaptation for image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 251–260. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_24

    Chapter  Google Scholar 

  16. Landman, B., Xu, Z., Igelsias, J., Styner, M., Langerak, T., Klein, A.: MICCAI multi-atlas labeling beyond the cranial vault-workshop and challenge (2015)

    Google Scholar 

  17. Lemaître, G., Martí, R., Freixenet, J., Vilanova, J.C., Walker, P.M., Meriaudeau, F.: Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a review. Comput. Biol. Med. 60, 8–31 (2015)

    Article  Google Scholar 

  18. Li, K., Wang, S., Yu, L., Heng, P.A.: Dual-teacher++: exploiting intra-domain and inter-domain knowledge with reliable transfer for cardiac segmentation. IEEE Trans. Med. Imaging 40, 2771–2782(2020)

    Google Scholar 

  19. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)

    Google Scholar 

  20. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  21. Bloch, N., et al.: NCI-ISBI 2013 challenge: automated segmentation of prostate structures (2013). http://doi.org/10.7937/K9/TCIA.2015.zF0vlOPv

  22. Ouyang, C., Kamnitsas, K., Biffi, C., Duan, J., Rueckert, D.: Data efficient unsupervised domain adaptation for cross-modality image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 669–677. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_74

    Chapter  Google Scholar 

  23. Roth, H.R., et al.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_68

    Chapter  Google Scholar 

  24. Tang, Y., Tang, Y., Sandfort, V., Xiao, J., Summers, R.M.: TUNA-net: task-oriented unsupervised adversarial network for disease recognition in cross-domain chest X-rays. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 431–440. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_48

    Chapter  Google Scholar 

  25. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. arXiv preprint arXiv:1703.01780 (2017)

  26. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7472–7481 (2018)

    Google Scholar 

  27. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2517–2526 (2019)

    Google Scholar 

  28. Wu, X., Zhou, Q., Yang, Z., Zhao, C., Latecki, L.J., et al.: Entropy minimization vs. diversity maximization for domain adaptation. arXiv preprint arXiv:2002.01690 (2020)

  29. Xu, R., Li, G., Yang, J., Lin, L.: Larger norm more transferable: an adaptive feature norm approach for unsupervised domain adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1426–1435 (2019)

    Google Scholar 

  30. Yang, C., Guo, X., Zhu, M., Ibragimov, B., Yuan, Y.: Mutual-prototype adaptation for cross-domain polyp segmentation. IEEE J. Biomed. Health Inform. 25(10), 3886–3897 (2021)

    Article  Google Scholar 

  31. Yang, Y., Soatto, S.: FDA: Fourier domain adaptation for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4085–4095 (2020)

    Google Scholar 

  32. Zakazov, I., Shirokikh, B., Chernyavskiy, A., Belyaev, M.: Anatomy of domain shift impact on U-Net layers in MRI segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 211–220. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_20

    Chapter  Google Scholar 

  33. Zeng, G., et al.: Semantic consistent unsupervised domain adaptation for cross-modality medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 201–210. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_19

    Chapter  Google Scholar 

  34. Zeng, G., et al.: Entropy guided unsupervised domain adaptation for cross-center hip cartilage segmentation from MRI. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 447–456. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_44

    Chapter  Google Scholar 

  35. Zou, Y., Yu, Z., Vijaya Kumar, B.V.K., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 297–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_18

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaowei Fang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 552 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Fang, C., Li, G. (2022). Gradient-Rebalanced Uncertainty Minimization for Cross-Site Adaptation of Medical Image Segmentation. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13535. Springer, Cham. https://doi.org/10.1007/978-3-031-18910-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18910-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18909-8

  • Online ISBN: 978-3-031-18910-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics