Skip to main content

Weighted Graph Based Feature Representation forĀ Finger-Vein Recognition

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13535))

Included in the following conference series:

  • 1349 Accesses

Abstract

Graph-based method is highly favorable for finger-vein recognition. The existing graph construct strategies are inflexible and unable to describe the vein networks effectively. In this paper, we propose a new weighted graph construction method for finger-vein network feature representation. First, a node-set generated by image division is reshaped according local vein-network skeleton. Then, the edges connecting adjacent nodes are weighted by considering both the content variations of blocks and the similarities between adjacent blocks. Therefore, the generated graphs using these nodes and weighted edges are capable in carrying both the global random patterns and the local variations contained in finger-vein networks. Experiments are implemented to show that the proposed method achieves better results than other existing methods.

Supported by the National Natural Science Foundation of China under Grant 62076166.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, J., Shi, Y.: Finger-vein ROI localization and vein ridge enhancement. Pattern Recogn. Lett. 33(12), 1569ā€“1579 (2012)

    ArticleĀ  Google ScholarĀ 

  2. Yang, J., Shi, Y., Jia, G.: Finger-vein image matching based on adaptive curve transformation. Pattern Recogn. 66, 34ā€“43 (2017)

    ArticleĀ  Google ScholarĀ 

  3. Yang, J., Shi, Y.: Finger-vein network enhancement and segmentation. Pattern Anal. Appl. 17(4), 783ā€“797 (2014)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  4. Li, S., Zhang B.: An adaptive discriminant and sparsity feature descriptor for finger vein recognition. In: IEEE International Conference on Acoustics, Speech, & Signal Processing, pp. 2140ā€“2144. IEEE, Toronto Canada (2021)

    Google ScholarĀ 

  5. Choi, G., Lim, C., Choi, H.: A center-biased graph learning algorithm for image classification. In: IEEE International Conference on Big Data and Smart Computing, pp. 324ā€“327. IEEE, Jeju (2017)

    Google ScholarĀ 

  6. Giraldo, J., Javed, S., Bouwmans, T.: Graph moving object segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 44(5), 2485ā€“2503 (2020)

    Google ScholarĀ 

  7. Madi, K., Paquet, E., Kheddouci, H.: New graph distance for deformable 3D objects recognition based on triangle-stars decomposition. Pattern Recogn. 90, 297ā€“307 (2019)

    ArticleĀ  Google ScholarĀ 

  8. Yang, J., Zhang, L., Wang, Y., et al.: Face recognition based on weber symmetrical local graph structure. KSII Trans. Internet Inf. Syst. 12(4), 1748ā€“1759 (2018)

    Google ScholarĀ 

  9. Kumar, D., Garain, J., Kisku, D.R., Sing, J.K., Gupta, P.: Ensemble face recognition system using dense local graph structure. In: Huang, D.-S., Gromiha, M.M., Han, K., Hussain, A. (eds.) ICIC 2018. LNCS (LNAI), vol. 10956, pp. 846ā€“852. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95957-3_91

    ChapterĀ  Google ScholarĀ 

  10. Li, S., Zhang, H., Yang, J.: Novel local coding algorithm for finger multimodal feature description and recognition. Sensors 19(9), 2213 (2019)

    ArticleĀ  Google ScholarĀ 

  11. Dong, S., Yang, J., Chen, Y., et al.: Finger vein recognition based on multi-orientation weighted symmetric local graph structure. Ksii Trans. Internet Inf. Syst. 9(10), 4126ā€“4142 (2015)

    Google ScholarĀ 

  12. Zhao, Z., Ye, Z., Yang, J., Zhang, H.: Finger crystal feature recognition based on graph convolutional network. In: Feng, J., Zhang, J., Liu, M., Fang, Y. (eds.) CCBR 2021. LNCS, vol. 12878, pp. 203ā€“212. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86608-2_23

    ChapterĀ  Google ScholarĀ 

  13. Ye, Z., Yang, J.: A finger-vein recognition method based on weighted graph model. J. Shandong Univ. (Eng. Sci.) 48(03), 103ā€“109 (2018)

    Google ScholarĀ 

  14. Lajevardi, S., Arakala, A., Davis, S., et al.: Retina verification system based on biometric graph matching. IEEE Trans. Image Process 22(9), 3625ā€“3635 (2013)

    ArticleĀ  Google ScholarĀ 

  15. Arakala, A., Davis, S., Hao, H., et al.: Value of graph topology in vascular biometrics. IET Biometrics 6(2), 117ā€“125 (2017)

    ArticleĀ  Google ScholarĀ 

  16. Zhao, J., Ai, D., Huang, Y., et al.: Quantitation of vascular morphology by directed graph construction. IEEE Access 7, 21609ā€“21622 (2019)

    ArticleĀ  Google ScholarĀ 

  17. Yang, J., Wei, J., Shi, Y.: Accurate ROI localization and hierarchical hyper-sphere model for finger-vein recognition. Neurocomputing 328, 171ā€“181 (2019)

    ArticleĀ  Google ScholarĀ 

  18. Simoncelli, E., Farid, H.: Steerable wedge filters for local orientation analysis. IEEE Trans. Image Process. 5(9), 1377ā€“1382 (1996)

    ArticleĀ  Google ScholarĀ 

  19. Yin, Y., Liu, L., Sun, X.: SDUMLA-HMT: a multimodal biometric database. In: Sun, Z., Lai, J., Chen, X., Tan, T. (eds.) CCBR 2011. LNCS, vol. 7098, pp. 260ā€“268. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25449-9_33

    ChapterĀ  Google ScholarĀ 

  20. Wen, M., Zhang, H., Yang, J.: End-to-end finger trimodal features fusion and recognition model based on CNN. In: Feng, J., Zhang, J., Liu, M., Fang, Y. (eds.) CCBR 2021. LNCS, vol. 12878, pp. 39ā€“48. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86608-2_5

    ChapterĀ  Google ScholarĀ 

  21. Li, S., Zhang, H., Jia, G., Yang, J.: Finger vein recognition based on weighted graph structural feature encoding. In: Zhou, J., Wang, Y., Sun, Z., Jia, Z., Feng, J., Shan, S., Ubul, K., Guo, Z. (eds.) CCBR 2018. LNCS, vol. 10996, pp. 29ā€“37. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97909-0_4

    ChapterĀ  Google ScholarĀ 

  22. Li, R., Su, Z., Zhang, H.: Application of improved GCNs in feature representation of finger-vein. J. Signal Process. 36(4), 550ā€“561 (2020)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfeng Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, Z., Zhao, Z., Wen, M., Yang, J. (2022). Weighted Graph Based Feature Representation forĀ Finger-Vein Recognition. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13535. Springer, Cham. https://doi.org/10.1007/978-3-031-18910-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18910-4_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18909-8

  • Online ISBN: 978-3-031-18910-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics