Skip to main content

Decouple U-Net: A Method for the Segmentation and Counting of Macrophages in Whole Slide Imaging

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Abstract

At present, tumor-associated macrophages (TAMs) are receiving substantial attention owing to their potential as new therapeutic targets. However, the recognition and counting of TAMs remains an open problem. The results of existing algorithms and procedures are unsatisfactory and exhibit multiple defects such as blurred edges or a long inference time. In this work, we first propose an algorithm based on simple linear iterative clustering for the automatic selection of TAMs-dense hot spots in huge whole slide imaging. Subsequently, we present an end-to-end method based on U-Net for the segmentation and counting of pleomorphic TAMs. Edge detection is incorporated into the network architecture and nuclei information is used for verification. The experimental results demonstrate that our method achieved the highest F1-score and relatively good edge segmentation accuracy with an acceptable parameter size on a constructed dataset. The average counting results of our method also exhibited a comparatively small deviation, thereby demonstrating the possibility for clinical application.

The code and dataset are available at https://github.com/Meteorsc9/Decouple-U-Net.

Z. Chen and H. Yang—These authors have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng, N., Bai, X., Shu, Y., Ahmad, O., Shen, P.: Targeting tumor-associated macrophages as an antitumor strategy. Biochem. Pharmacol. 183, 114354 (2021)

    Article  Google Scholar 

  2. Petty, A.J., Owen, D.H., Yang, Y., Huang, X.: Targeting tumor-associated macrophages in cancer immunotherapy. Cancers 13, 5318 (2021)

    Article  Google Scholar 

  3. Pan, Y., Yu, Y., Wang, X., Zhang, T.: Tumor-associated macrophages in tumor immunity. Front. Immunol., 3151 (2020)

    Google Scholar 

  4. Duraiyan, J., Govindarajan, R., Kaliyappan, K., Palanisamy, M.: Applications of immunohistochemistry. J. Pharm. Bioallied Sci. 4, S307 (2012)

    Article  Google Scholar 

  5. Yoshida, C., et al.: Tumor-associated CD163+ macrophage as a predictor of tumor spread through air spaces and with CD25+ lymphocyte as a prognostic factor in resected stage I lung adenocarcinoma. Lung Cancer 167, 34–40 (2022)

    Google Scholar 

  6. Wagner, M., et al.: Automated macrophage counting in DLBCL tissue samples: a ROF filter based approach. Biol. Proced. Online 21, 1–18 (2019)

    Article  Google Scholar 

  7. Cassetta, L., et al.: Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35, 588–602, e510 (2019)

    Google Scholar 

  8. Kumar, N., Gupta, R., Gupta, S.: Whole slide imaging (WSI) in pathology: current perspectives and future directions. J. Digit. Imaging 33, 1034–1040 (2020)

    Article  Google Scholar 

  9. Baxi, V., Edwards, R., Montalto, M., Saha, S.: Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod. Pathol., 1–10 (2021)

    Google Scholar 

  10. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012)

    Article  Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  12. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems 28 (2015)

    Google Scholar 

  13. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)

    Article  Google Scholar 

  14. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  15. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  16. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Google Scholar 

  17. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut” interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (TOG) 23, 309–314 (2004)

    Article  Google Scholar 

  18. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  Google Scholar 

  19. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  21. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DEEPLAB: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2017)

    Article  Google Scholar 

  22. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA ML-CDS 2018 2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

  23. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  24. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  25. Takikawa, T., Acuna, D., Jampani, V., Fidler, S.: Gated-SCNN: gated shape CNNs for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5229–5238 (2019)

    Google Scholar 

  26. Zhen, M., et al.: Joint semantic segmentation and boundary detection using iterative pyramid contexts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13666–13675 (2020)

    Google Scholar 

  27. Li, X., et al.: Improving semantic segmentation via decoupled body and edge supervision. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 435–452. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_26

  28. Zhan, G., Wang, W., Sun, H., Hou, Y., Feng, L.: Auto-CSC: a transfer learning based automatic cell segmentation and count framework. Cyborg Bionic Syst. 2022 (2022)

    Google Scholar 

  29. Vahadane, A., et al.: Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging 35, 1962–1971 (2016)

    Article  Google Scholar 

  30. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  31. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  32. Zhu, Y., et al.: Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8856–8865 (2019)

    Google Scholar 

  33. Crum, W.R., Camara, O., Hill, D.L.: Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans. Med. Imaging 25, 1451–1461 (2006)

    Article  Google Scholar 

  34. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Acknowledgements

This work is supported by Clinical Medicine Plus X - Young Scholars Project, Peking University, the Fundamental Research Funds for the Central Universities PKU2022LCXQ19 and Innovative Experiment Project for Undergraduates of Peking University Health Science Center 2021-SSDC-14. We would like to thank Yan Gao and Jianyun Zhang for their work on annotating images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Yang, H., Gao, M., Hu, X., Li, Y., Wang, L. (2022). Decouple U-Net: A Method for the Segmentation and Counting of Macrophages in Whole Slide Imaging. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13535. Springer, Cham. https://doi.org/10.1007/978-3-031-18910-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18910-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18909-8

  • Online ISBN: 978-3-031-18910-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics