Skip to main content

Locally Geometry-Aware Improvements of LOP for Efficient Skeleton Extraction

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13536))

Included in the following conference series:

  • 1686 Accesses

Abstract

The skeletons extracted from 3D point clouds depict the general distributions of the mesh surfaces, which are affected by the local geometrical relations embedded in the neighboring points. However, the local mesh geometry is still not effectively utilized by the popular contraction based skeleton extraction method LOP and its variants. Therefore, this paper improves LOP from two aspects based on the local geometrical distributions. One is the bilateral filter based weighting scheme which additionally takes curvature similarities between neighboring points to better distribute the samples and the other is the eigenvalue based adaptive radius scheme which makes the contraction area varied according to the local shape. These two updates combine together so that an effective contraction of samples during optimization can be obtained. The experiments demonstrate that the improved LOP can obtain more efficient skeleton extractions than existing methods.

Supported by the Natural Science Foundation of Anhui Province (2108085MF210, 1908085MF187).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Au, O.K.C., Tai, C.L., Chu, H.K., Cohen-Or, D., Lee, T.Y.: Skeleton extraction by mesh contraction. ACM Trans. Graph. 27(3), 1–10 (2008)

    Article  Google Scholar 

  2. Bærentzen, A., Rotenberg, E.: Skeletonization via local separators. ACM Trans. Graph. 40(5), 1–18 (2021)

    Article  Google Scholar 

  3. Banterle, F., Corsini, M., Cignoni, P., Scopigno, R.: A low-memory, straightforward and fast bilateral filter through subsampling in spatial domain. Comput. Graph. Forum 31, 19–32 (2012)

    Google Scholar 

  4. Batchuluun, G., Kang, J.K., Nguyen, D.T., Pham, T.D., Arsalan, M., Park, K.R.: Action recognition from thermal videos using joint and skeleton information. IEEE Access 9, 11716–11733 (2021)

    Article  Google Scholar 

  5. Bogo, F., Romero, J., Loper, M., Black, M.J.: FAUST: dataset and evaluation for 3D mesh registration. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3794–3801 (2014)

    Google Scholar 

  6. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Springer, New York (2008). https://doi.org/10.1007/978-0-387-73301-2

  7. Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., Su, Z.: Point cloud skeletons via Laplacian based contraction. In: Shape Modeling International Conference, pp. 187–197. IEEE (2010)

    Google Scholar 

  8. Chen, R., et al.: Multiscale feature line extraction from raw point clouds based on local surface variation and anisotropic contraction. IEEE Trans. Autom. Sci. Eng. 19(2), 1003–2022 (2021)

    Article  Google Scholar 

  9. Cheng, J., et al.: Skeletonization via dual of shape segmentation. Comput. Aided Geomet. Design 80, 101856 (2020)

    Article  MathSciNet  Google Scholar 

  10. Chu, Y., Wang, W., Li, L.: Robustly extracting concise 3D curve skeletons by enhancing the capture of prominent features. IEEE Trans. Visual. Comput. Graph, pp. 1–1 (2022)

    Google Scholar 

  11. Cornea, N.D., Silver, D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Visual Comput. Graph. 13(3), 530 (2007)

    Article  Google Scholar 

  12. Dey, S.: Subpixel dense refinement network for skeletonization. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 258–259 (2020)

    Google Scholar 

  13. Fang, X., Zhou, Q., Shen, J., Jacquemin, C., Shao, L.: Text image deblurring using kernel sparsity prior. IEEE Trans. Cybernet. 50(3), 997–1008 (2018)

    Article  Google Scholar 

  14. Fu, L., Liu, J., Zhou, J., Zhang, M., Lin, Y.: Tree skeletonization for raw point cloud exploiting cylindrical shape prior. IEEE Access 8, 27327–27341 (2020)

    Article  Google Scholar 

  15. Ghanem, M.A., Anani, A.A.: Binary image skeletonization using 2-stage U-Net. arXiv preprint arXiv:2112.11824 (2021)

  16. Huang, H., Li, D., Zhang, H., Ascher, U., Cohen-Or, D.: Consolidation of unorganized point clouds for surface reconstruction. ACM Trans. Graph. 28(5), 1–7 (2009)

    Article  Google Scholar 

  17. Huang, H., Wu, S., Cohen-Or, D., Gong, M., Zhang, H., Li, G., Chen, B.: L1-medial skeleton of point cloud. ACM Trans. Graph. 32(4), 1–8 (2013)

    MATH  Google Scholar 

  18. Jalba, A.C., Kustra, J., Telea, A.C.: Surface and curve skeletonization of large 3D models on the GPU. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1495–1508 (2012)

    Article  Google Scholar 

  19. Jalba, A.C., Sobiecki, A., Telea, A.C.: An unified multiscale framework for planar, surface, and curve skeletonization. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 30–45 (2015)

    Article  Google Scholar 

  20. Jiang, A., Liu, J., Zhou, J., Zhang, M.: Skeleton extraction from point clouds of trees with complex branches via graph contraction. Vis. Comput. 37(8), 2235–2251 (2020). https://doi.org/10.1007/s00371-020-01983-6

    Article  Google Scholar 

  21. Ko, D.H., Hassan, A.U., Suk, J., Choi, J.: SKFont: Skeleton-driven Korean font generator with conditional deep adversarial networks. Int. J. Doc. Anal. Recogn. 24(4), 325–337 (2021)

    Article  Google Scholar 

  22. Li, L., Wang, W.: Contracting medial surfaces isotropically for fast extraction of centred curve skeletons. In: Computer Graphics Forum, vol. 36, pp. 529–539 (2017)

    Google Scholar 

  23. Li, L., Wang, W.: Improved use of LOP for curve skeleton extraction. In: Computer Graphics Forum, vol. 37, pp. 313–323 (2018)

    Google Scholar 

  24. Lin, C., Li, C., Liu, Y., Chen, N., Choi, Y.K., Wang, W.: Point2Skeleton: learning skeletal representations from point clouds. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4277–4286 (2021)

    Google Scholar 

  25. Lipman, Y., Cohen-Or, D., Levin, D., Tal-Ezer, H.: Parameterization-free projection for geometry reconstruction. ACM Trans. Graph. 26(3), 22-es (2007)

    Google Scholar 

  26. Liu, Y., Guo, J., Benes, B., Deussen, O., Zhang, X., Huang, H.: TreePartNet: neural decomposition of point clouds for 3D tree reconstruction. ACM Trans. Graph. 40(6) (2021)

    Google Scholar 

  27. Livesu, M., Guggeri, F., Scateni, R.: Reconstructing the curve-skeletons of 3D shapes using the visual hull. IEEE Trans. Visual Comput. Graph. 18(11), 1891–1901 (2012)

    Article  Google Scholar 

  28. Lu, L., Lévy, B., Wang, W.: Centroidal Voronoi tessellation of line segments and graphs. Comput. Graph. Forum 31, 775–784 (2012)

    Google Scholar 

  29. Luo, S., et al.: Laser curve extraction of wheelset based on deep learning skeleton extraction network. Sensors 22(3), 859 (2022)

    Article  Google Scholar 

  30. Nathan, S., Kansal, P.: SkeletonNetV2: a dense channel attention blocks for skeleton extraction. In: IEEE/CVF International Conference on Computer Vision, pp. 2142–2149 (2021)

    Google Scholar 

  31. Panichev, O., Voloshyna, A.: U-Net based convolutional neural network for skeleton extraction. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1186–1189 (2019)

    Google Scholar 

  32. Preiner, R., Mattausch, O., Arikan, M., Pajarola, R., Wimmer, M.: Continuous projection for fast L1 reconstruction. ACM Trans. Graph. 33(4), 1–13 (2014)

    Article  Google Scholar 

  33. Qin, H., Han, J., Li, N., Huang, H., Chen, B.: Mass-driven topology-aware curve skeleton extraction from incomplete point clouds. IEEE Trans. Visual Comput. Graph. 26(9), 2805–2817 (2019)

    Article  Google Scholar 

  34. Ritter, M., Schiffner, D., Harders, M.: Robust reconstruction of curved line structures in noisy point clouds. Visual Inform. 5(3), 1–14 (2021)

    Article  Google Scholar 

  35. Song, C., Pang, Z., Jing, X., Xiao, C.: Distance field guided \(l_1\)-median skeleton extraction. Vis. Comput. 34(2), 243–255 (2018)

    Article  Google Scholar 

  36. Tagliasacchi, A., Alhashim, I., Olson, M., Zhang, H.: Mean curvature skeletons. Comput. Graphics Forum 31, 1735–1744 (2012)

    Google Scholar 

  37. Tagliasacchi, A., Delame, T., Spagnuolo, M., Amenta, N., Telea, A.: 3D skeletons: a state-of-the-art report. Compu. Graph. Forum 35, 573–597 (2016)

    Google Scholar 

  38. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: International Conference on Computer Vision, pp. 839–846 (1998)

    Google Scholar 

  39. Wang, Y.S., Lee, T.Y.: Curve-skeleton extraction using iterative least squares optimization. IEEE Trans. Visual Comput. Graphics 14(4), 926–936 (2008)

    Article  Google Scholar 

  40. Yan, Y., Letscher, D., Ju, T.: Voxel cores: efficient, robust, and provably good approximation of 3D medial axes. ACM Trans. Graphics 37(4), 1–13 (2018)

    Google Scholar 

  41. Yan, Y., Sykes, K., Chambers, E., Letscher, D., Ju, T.: Erosion thickness on medial axes of 3D shapes. ACM Trans. Graph. 35(4), 1–12 (2016)

    Google Scholar 

  42. Yang, L., Oyen, D., Wohlberg, B.: A novel algorithm for skeleton extraction from images using topological graph analysis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1162–1166 (2019)

    Google Scholar 

  43. Zhang, L., Hu, F., Chu, Z., Bentley, E., Kumar, S.: 3D transformative routing for UAV swarming networks: a skeleton-guided, GPS-free approach. IEEE Trans. Veh. Technol. 70(4), 3685–3701 (2021)

    Article  Google Scholar 

  44. Zhou, J., Liu, J., Zhang, M.: Curve skeleton extraction via k-nearest-neighbors based contraction. Int. J. Appl. Math. Comput. Sci. 30(1), 123–132 (2020)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyong Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, X., Hu, L., Ye, F., Wang, L. (2022). Locally Geometry-Aware Improvements of LOP for Efficient Skeleton Extraction. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13536. Springer, Cham. https://doi.org/10.1007/978-3-031-18913-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18913-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18912-8

  • Online ISBN: 978-3-031-18913-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics