Skip to main content

Category-Oriented Adversarial Data Augmentation via Statistic Similarity for Satellite Images

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13536))

Included in the following conference series:

Abstract

Deep learning is one of the essential technologies for remote sensing tasks, which heavily depends on the quantity of training data. However, it is difficult to obtain or label the remotely sensed images in their non-cooperative imaging mode. Data augmentation is a viable solution to this issue, but most of the current data augmentation methods are task specific or dataset specific, which are not as applicable as a generalized solution for the remotely sensed images. In this paper, we propose a category-oriented adversarial data augmentation method using statistic similarity cross categories, which formulates the common appearance-based statistic factors in the object detection into a combination index, to depict the statistic similarity between different categories and to generate new adversarial samples between similar categories with more reliable physical significance. Experimental results demonstrated that, taking the most advanced RT method as a baseline, the total mAP can be increased by 2.0% on the DOTA dataset for the object detection task by using our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xia, G.S., Bai, X., Ding, J., et al.: DOTA: A large-scale dataset for object detection in aerial images. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 3974–3983 (2018)

    Google Scholar 

  2. LeCun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  3. Wan, L., Zeiler, M., Zhang, S., et al.: Regularization of Neural Networks using Dropconnect. In: International Conference on Machine Learning. ICLR, pp. 1058–1066 (2013)

    Google Scholar 

  4. Zagoruyko, S., Komodakis, N.: Wide Residual Networks. British Machine Vision Conference (2016)

    Google Scholar 

  5. Zhong, Z., Zheng, L., Kang, G., et al.: Random erasing data augmentation. In: AAAI Conference on Artificial Intelligence. 34(07), 13001–13008 (2020)

    Google Scholar 

  6. Lemley, J., Bazrafkan, S., Corcoran, P.: Smart augmentation learning an optimal data augmentation strategy. IEEE Access 5, 5858–5869 (2017)

    Article  Google Scholar 

  7. Tran, T., Pham, T., Carneiro, G., et al.: A bayesian data augmentation approach for learning deep models. In: Advances in Neural Information Processing Systems, pp. 2794–2803 (2017)

    Google Scholar 

  8. Cubuk, E.D., Zoph, B., Mane, D., et al.: Autoaugment: Learning Augmentation Policies from Data. arXiv preprint arXiv:1805.09501 (2018)

  9. Wang, Z., She, Q., Ward, T.E.: Generative adversarial networks in computer vision: a survey and taxonomy. ACM Computing Surveys (CSUR) 54(2), 1–38 (2021)

    Article  Google Scholar 

  10. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. Advances in Neural Information Processing Systems, NIPS, p. 27 (2014)

    Google Scholar 

  11. Zhu, J.Y., Park, T., Isola, P., et al.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision, ICCV, pp. 2223–2232 (2017)

    Google Scholar 

  12. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  13. Isola, P., Zhu, J.Y., Zhou, T., et al.: Image-to-image translation with conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 1125–1134 (2017)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 770–778 (2016)

    Google Scholar 

  15. Ding, J., Xue, N., Long, Y., et al.: Learning roi transformer for oriented object detection in aerial images. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 2849–2858 (2019)

    Google Scholar 

  16. Li, Z., Peng, C., Yu, G., et al.: Light-head R-CNN: In: Defense of Two-stage Object Detector. arXiv preprint arXiv:1711.07264 (2017)

  17. Ding, X., Guo, Y., Ding, G., et al.: Acnet: Strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks. In: IEEE/CVF International Conference on Computer Vision. ICCV, pp. 1911–1920 (2019)

    Google Scholar 

  18. Kong, T., Sun, F., Yao, A., et al.: Ron: reverse connection with objectness prior networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 5936–5944 (2017)

    Google Scholar 

  19. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  20. Chen, L.C., Papandreou, G., Kokkinos, I., et al.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Analysis Machine Intelligence 40(4), 834–848, (2017)

    Google Scholar 

  21. Lin, T.Y., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection. IEEE Trans. Pattern Analysis Machine Intelligence pp. 2999–3007 (2017)

    Google Scholar 

  22. Jiang, Y., Zhu, X., Wang, X., et al.: R2CNN: rotational region cnn for orientation robust scene text detection. arXiv preprint arXiv:1706.09579 (2017)

  23. Ma, J., Shao, W., Ye, H., et al.: Arbitrary-oriented scene text detection via rotation proposals. IEEE Transactions on Multimedia 20(11), 3111–3122 (2018)

    Google Scholar 

  24. Dai, J., Qi, H., Xiong, Y., et al.: Deformable convolutional networks. In: IEEE International Conference on Computer Vision. ICCV, pp. 764–773 (2017)

    Google Scholar 

  25. Yang, X., et al.: Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks. Remote Sensing 10(1), 132 (2018)

    Article  Google Scholar 

  26. Yang, X., Sun, H., Sun, X., Yan, M., Guo, Z., Fu, K.: Position detection and direction prediction for arbitrary-oriented ships via multiscale rotation region convolutional neural network. IEEE Access 6, 50839–50849 (2018)

    Google Scholar 

  27. Mariani, G., Scheidegger, F., Istrate, R., et al.: Bagan: Data Augmentation with Balancing GAN. arXiv preprint arXiv:1803.09655 (2018)

  28. Zhao, S., Liu, Z., Lin, J., et al.: Differentiable augmentation for data-efficient GAN training. Adv. Neural. Inf. Process. Syst. 33, 7559–7570 (2020)

    Google Scholar 

  29. Jiang, L., Dai, B., Wu, W., et al.: Deceive D: Adaptive pseudo augmentation for GAN training with limited data. Advances in Neural Inf. Processing Systems 34, 2165521667 (2021)

    Google Scholar 

  30. Schindler, K., Suter, D.: Object detection by global contour shape. Pattern Recogn. 41(12), 3736–3748 (2008)

    Article  Google Scholar 

  31. Zhang, H., Xu, Z., Han, X., et al.: Refining FFT-based heatmap for the detection of cluster distributed targets in satellite images, British Machine Vision Conference (2021)

    Google Scholar 

  32. Shmelkov, K., Schmid, C., Alahari, K.: How good Is my GAN? In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 218–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_14

    Chapter  Google Scholar 

  33. Wang, H., Suter, D., Schindler, K.: Effective appearance model and similarity measure for particle filtering and visual tracking. In: European Conference on Computer Vision. Springer, Berlin, Heidelberg, pp. 606–618 (2006). https://doi.org/10.1007/11744078_47

  34. Bell, S., Bala, K.: Learning visual similarity for product design with convolutional neural networks. ACM Trans. Graphics (TOG) 34(4), 1–10 (2015)

    Article  Google Scholar 

  35. Siggelkow, S., Schael, M., Burkhardt, H.: SIMBA—search IMages by appearance. In: Joint Pattern Recognition Symposium. Springer, Berlin, Heidelberg, pp. 9-16 (2001). https://doi.org/10.1007/3-540-45404-7_2

Download references

Acknowledgement

This work was supported in part by the National Nature Science Foundation (41971294), China Postdoctoral Science Foundation (2020M680560) and Cross-Media Intelligent Technology Project of BNRist (BNR2019TD01022) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Leng, W., Han, X., Sun, W. (2022). Category-Oriented Adversarial Data Augmentation via Statistic Similarity for Satellite Images. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13536. Springer, Cham. https://doi.org/10.1007/978-3-031-18913-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18913-5_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18912-8

  • Online ISBN: 978-3-031-18913-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics