Skip to main content

Feature Difference Enhancement Fusion for Remote Sensing Image Change Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13536))

Included in the following conference series:

Abstract

Remote sensing image change detection identifies pixel-wise differences between bitemporal images. It is of great significance for geographic monitoring. However, existing approaches still lack efficiency when dealing with the change features. The most general manner is to introduce attention mechanisms in different time streams to strengthen the features and then superimpose them together to complete the fusion of the features. These methods can not effectively excavate and apply the relationship between different temporal features. To alleviate this problem, we introduce a feature difference enhancement fusion module based on pixel position offset in the time dimension (time-position offset). We will learn the offset of the pixel changes in the corresponding areas between the bitemporal features, which will be used to guide the enhancement of the difference between the change-related areas and the change-irrelated areas in a single feature map. Meanwhile, we propose a general and straightforward change detection framework composed of the basic ResNet18 as the encoder and a simple MLP structure as the decoder, instead of the complex structures like UNet or FPN. Extensive experiments on three datasets, including LEVIR-CD, LEVIR-CD+, and S2Looking datasets, demonstrate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, H., Li, W., Shi, Z.: Adversarial instance augmentation for building change detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2021)

    Article  Google Scholar 

  2. Chen, H., Qi, Z., Shi, Z.: Remote sensing image change detection with transformers. IEEE Trans. Geosci. Remote Sens. (2021)

    Google Scholar 

  3. Chen, H., Shi, Z.: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sens. 12(10), 1662 (2020)

    Article  Google Scholar 

  4. Chen, P., Zhang, B., Hong, D., Chen, Z., Yang, X., Li, B.: FCCDN: Feature constraint network for VHR image change detection. ISPRS J. Photogramm. Remote. Sens. 187, 101–119 (2022)

    Article  Google Scholar 

  5. Chen, T., Wang, S.H., Wang, Q., Zhang, Z., Xie, G.S., Tang, Z.: Enhanced feature alignment for unsupervised domain adaptation of semantic segmentation. IEEE Trans. Multimedia (TMM) 24, 1042–1054 (2022)

    Article  Google Scholar 

  6. Chen, T., Xie, G., Yao, Y., Wang, Q., Shen, F., Tang, Z., Zhang, J.: Semantically meaningful class prototype learning for one-shot image segmentation. IEEE Trans. Multimedia (TMM) 24, 968–980 (2022)

    Article  Google Scholar 

  7. Chen, T., Yao, Y., Zhang, L., Wang, Q., Xie, G., Shen, F.: Saliency guided inter-and intra-class relation constraints for weakly supervised semantic segmentation. IEEE Trans. Multimedia (TMM) (2022). https://doi.org/10.1109/TMM.2022.3157481

    Article  Google Scholar 

  8. Daudt, R.C., Le Saux, B., Boulch, A.: Fully convolutional siamese networks for change detection. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 4063–4067. IEEE (2018)

    Google Scholar 

  9. De Bem, P.P., de Carvalho Junior, O.A., Fontes Guimarães, R., Trancoso Gomes, R.A.: Change detection of deforestation in the Brazilian amazon using Landsat data and convolutional neural networks. Remote Sens. 12(6), 901 (2020)

    Article  Google Scholar 

  10. Fang, S., Li, K., Shao, J., Li, Z.: SNUNet-CD: a densely connected siamese network for change detection of VHR images. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)

    Google Scholar 

  11. Fung, T., LeDrew, E.: Application of principal components analysis to change detection. Photogramm. Eng. Remote. Sens. 53(12), 1649–1658 (1987)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Huang, X., Zhang, L., Zhu, T.: Building change detection from multitemporal high-resolution remotely sensed images based on a morphological building index. IEEE J. Selected Topic Appl. Earth Obs. Remote Sens. 7(1), 105–115 (2013)

    Article  Google Scholar 

  14. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in neural information processing systems 28 (2015)

    Google Scholar 

  15. Khelifi, L., Mignotte, M.: Deep learning for change detection in remote sensing images: comprehensive review and meta-analysis. IEEE Access 8, 126385–126400 (2020)

    Article  Google Scholar 

  16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  17. Li, X., You, A., Zhu, Z., Zhao, H., Yang, M., Yang, K., Tan, S., Tong, Y.: Semantic flow for fast and accurate scene parsing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 775–793. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_45

    Chapter  Google Scholar 

  18. Liu, H., et al.: Exploiting web images for fine-grained visual recognition by eliminating open-set noise and utilizing hard examples. IEEE Trans. Multimedia (TMM) 24, 546–557 (2022)

    Article  Google Scholar 

  19. Liu, H., Zhang, H., Lu, J., Tang, Z.: Exploiting web images for fine-grained visual recognition via dynamic loss correction and global sample selection. IEEE Trans. Multimedia (TMM) 24, 1105–1115 (2022)

    Article  Google Scholar 

  20. Malila, W.A.: Change vector analysis: an approach for detecting forest changes with Landsat. In: LARS symposia, p. 385 (1980)

    Google Scholar 

  21. Pei, G., Shen, F., Yao, Y., Xie, G.S., Tang, Z., Tang, J.: Hierarchical feature alignment network for unsupervised video object segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV) (2022)

    Google Scholar 

  22. Shen, L., et al.: S2Looking: a satellite side-looking dataset for building change detection. Remote Sens. 13(24), 5094 (2021)

    Article  Google Scholar 

  23. Singh, A.: Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10(6), 989–1003 (1989)

    Article  Google Scholar 

  24. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  25. Sun, Z., Hua, X.S., Yao, Y., Wei, X.S., Hu, G., Zhang, J.: CRSSC: salvage reusable samples from noisy data for robust learning. In: Proceedings of the ACM International Conference on Multimedia (ACMMM), pp. 92–101 (2020)

    Google Scholar 

  26. Sun, Z., Liu, H., Wang, Q., Zhou, T., Wu, Q., Tang, Z.: Co-LDL: a co-training-based label distribution learning method for tackling label noise. IEEE Trans. Multimedia (TMM) 24, 1093–1104 (2022)

    Article  Google Scholar 

  27. Sun, Z., et al.: PNP: robust learning from noisy labels by probabilistic noise prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5311–5320 (2022)

    Google Scholar 

  28. Sun, Z., et al.: Webly supervised fine-grained recognition: Benchmark datasets and an approach. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 10602–10611 (2021)

    Google Scholar 

  29. Sun, Z., Yao, Y., Wei, X., Shen, F., Liu, H., Hua, X.S.: Boosting robust learning via leveraging reusable samples in noisy web data. IEEE Trans. Multimedia (TMM) (2022). https://doi.org/10.1109/TMM.2022.3158001

    Article  Google Scholar 

  30. Xu, J.Z., Lu, W., Li, Z., Khaitan, P., Zaytseva, V.: Building damage detection in satellite imagery using convolutional neural networks. arXiv preprint arXiv:1910.06444 (2019)

  31. Yao, Y., et al.: Non-salient region object mining for weakly supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2623–2632 (2021)

    Google Scholar 

  32. Yao, Y., Hua, X.S., Shen, F., Zhang, J., Tang, Z.: A domain robust approach for image dataset construction. In: Proceedings of the ACM International Conference on Multimedia (ACMMM), pp. 212–216 (2016)

    Google Scholar 

  33. Yao, Y., Hua, X., Gao, G., Sun, Z., Li, Z., Zhang, J.: Bridging the web data and fine-grained visual recognition via alleviating label noise and domain mismatch. In: Proceedings of the ACM International Conference on Multimedia (ACMMM), pp. 1735–1744 (2020)

    Google Scholar 

  34. Yao, Y., et al.: Exploiting web images for multi-output classification: from category to subcategories. IEEE Trans. Neural Netw. Learn. Syst. (TNNLS) 31(7), 2348–2360 (2020)

    Google Scholar 

  35. Yao, Y., Shen, F., Zhang, J., Liu, L., Tang, Z., Shao, L.: Extracting multiple visual senses for web learning. IEEE Trans. Multimedia (TMM) 21(1), 184–196 (2019)

    Article  Google Scholar 

  36. Yao, Y., Shen, F., Zhang, J., Liu, L., Tang, Z., Shao, L.: Extracting privileged information for enhancing classifier learning. IEEE Trans. Image Proc. (TIP) 28(1), 436–450 (2019)

    Article  MathSciNet  Google Scholar 

  37. Yao, Y., et al.: Jo-SRC: a contrastive approach for combating noisy labels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5192–5201 (2021)

    Google Scholar 

  38. Yao, Y., Zhang, J., Shen, F., Hua, X., Xu, J., Tang, Z.: Exploiting web images for dataset construction: a domain robust approach. IEEE Trans. Multimedia (TMM) 19(8), 1771–1784 (2017)

    Article  Google Scholar 

  39. Yao, Y., Zhang, J., Shen, F., Liu, L., Zhu, F., Zhang, D., Shen, H.T.: Towards automatic construction of diverse, high-quality image datasets. IEEE Trans. Knowl. Data Eng. (TKDE) 32(6), 1199–1211 (2020)

    Article  Google Scholar 

  40. Yao, Y., Zhang, J., Shen, F., Yang, W., Huang, P., Tang, Z.: Discovering and distinguishing multiple visual senses for polysemous words. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 523–530 (2018)

    Google Scholar 

  41. Zhang, C., Lin, G., Wang, Q., Shen, F., Yao, Y., Tang, Z.: Guided by meta-set: a data-driven method for fine-grained visual recognition. IEEE Trans. Multimedia (TMM) (2022). https://doi.org/10.1109/TMM.2022.3181439

    Article  Google Scholar 

  42. Zhang, C., Wang, Q., Xie, G., Wu, Q., Shen, F., Tang, Z.: Robust learning from noisy web images via data purification for fine-grained recognition. IEEE Trans. Multimedia (TMM) 24, 1198–1209 (2022)

    Article  Google Scholar 

  43. Zhang, C., et al.: Web-supervised network with softly update-drop training for fine-grained visual classification. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 12781–12788 (2020)

    Google Scholar 

  44. Zhang, C., Yao, Y., Shu, X., Li, Z., Tang, Z., Wu, Q.: Data-driven meta-set based fine-grained visual recognition. In: Proceedings of the ACM International Conference on Multimedia (ACMMM), pp. 2372–2381 (2020)

    Google Scholar 

  45. Zhang, C., et al.: Extracting useful knowledge from noisy web images via data purification for fine-grained recognition. In: Proceedings of the ACM International Conference on Multimedia (ACMMM), pp. 4063–4072 (2021)

    Google Scholar 

  46. Zhang, L., Hu, X., Zhang, M., Shu, Z., Zhou, H.: Object-level change detection with a dual correlation attention-guided detector. ISPRS J. Photogramm. Remote. Sens. 177, 147–160 (2021)

    Article  Google Scholar 

  47. Zheng, Z., Wan, Y., Zhang, Y., Xiang, S., Peng, D., Zhang, B.: CLNet: cross-layer convolutional neural network for change detection in optical remote sensing imagery. ISPRS J. Photogramm. Remote. Sens. 175, 247–267 (2021)

    Article  Google Scholar 

  48. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the pre-research project of the Equipment Development Department of the Central Military Commission (No. 31514020205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazhou Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, R., Pei, G., Peng, P., Chen, T., Yao, Y. (2022). Feature Difference Enhancement Fusion for Remote Sensing Image Change Detection. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13536. Springer, Cham. https://doi.org/10.1007/978-3-031-18913-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18913-5_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18912-8

  • Online ISBN: 978-3-031-18913-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics