Skip to main content

Mutual Learning Inspired Prediction Network for Video Anomaly Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Abstract

Video anomaly detection has made great achievements in security work. A basic assumption is that the abnormal is the outlier of the normal. However, most existing methods only focus on minimizing the reconstruction or prediction error of normal samples while ignoring to maximize that of abnormal samples. The completeness of the training data and the similarity between certain normal and abnormal samples can cause the network overfitting to normal samples and generalizing to abnormal samples. To address the two problems, we propose Mutual Learning Inspired Prediction Network. Specifically, it consists of two student generators and one discriminator to predict the future frame, together with our proposed Boundary Perception-Based Mimicry Loss and Self-Supervised Weighted Loss. The proposed Boundary Perception-Based Mimicry Loss guides the generators to learn the predicted frame from each, which can help to increase the diversity of training data and prevent interference at the same time. The proposed Self-Supervised Weighted Loss constraints the confusion samples in training data with a small weight, which can clarify the modeling goal of the network and enlarge the distance between normal and abnormal samples. Experiments on four mainstream datasets demonstrate the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abati, D., Porrello, A., Calderara, S., Cucchiara, R.: Latent space autoregression for novelty detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  2. Chalapathy, R., Menon, A.K., Chawla, S.: Robust, deep and inductive anomaly detection. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 36–51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_3

    Chapter  Google Scholar 

  3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3) (2009). https://doi.org/10.1145/1541880.1541882

  4. Dhole, H., Sutaone, M., Vyas, V.: Anomaly detection using convolutional spatiotemporal autoencoder. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (2019)

    Google Scholar 

  5. Fan, S., Meng, F.: Video prediction and anomaly detection algorithm based on dual discriminator. In: 2020 5th International Conference on Computational Intelligence and Applications (ICCIA), pp. 123–127 (2020). https://doi.org/10.1109/ICCIA49625.2020.00031

  6. Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2020)

    Google Scholar 

  7. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. CoRR abs/1604.04574 (2016). http://arxiv.org/abs/1604.04574

  8. Ionescu, R.T., Smeureanu, S., Popescu, M., Alexe, B.: Detecting abnormal events in video using narrowed normality clusters. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1951–1960 (2019). https://doi.org/10.1109/WACV.2019.00212

  9. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  10. Kim, J., Grauman, K.: Observe locally, infer globally: a space-time MRF for detecting abnormal activities with incremental updates. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, Florida, USA, 20–25 June 2009 (2009)

    Google Scholar 

  11. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. Computer Science (2014)

    Google Scholar 

  12. Kwon, Y.H., Park, M.G.: Predicting future frames using retrospective cycle GAN. In: IEEE Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  13. Liang, Z., Wang, H., Ding, X., Mu, T.: Industrial time series determinative anomaly detection based on constraint hypergraph. Knowl.-Based Syst. 233, 107548 (2021). https://doi.org/10.1016/j.knosys.2021.107548. https://www.sciencedirect.com/science/article/pii/S0950705121008108

  14. Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection - a new baseline. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6536–6545 (2018). https://doi.org/10.1109/CVPR.2018.00684

  15. Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 FPS in MATLAB. In: IEEE International Conference on Computer Vision (2014)

    Google Scholar 

  16. Luo, W., et al.: Video anomaly detection with sparse coding inspired deep neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 43(03), 1070–1084 (2021). https://doi.org/10.1109/TPAMI.2019.2944377

  17. Luo, W., Liu, W., Gao, S.: Remembering history with convolutional lstm for anomaly detection. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 439–444 (2017). https://doi.org/10.1109/ICME.2017.8019325

  18. Luo, W., Liu, W., Gao, S.: A revisit of sparse coding based anomaly detection in stacked RNN framework. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 341–349 (2017). https://doi.org/10.1109/ICCV.2017.45

  19. Lv, F., Liang, T., Zhao, J., Zhuo, Z., Wu, J., Yang, G.: Latent Gaussian process for anomaly detection in categorical data. Knowl.-Based Syst. 220, 106896 (2021). https://doi.org/10.1016/j.knosys.2021.106896. https://www.sciencedirect.com/science/article/pii/S0950705121001593

  20. Mahadevan, V., Li, W.X., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  21. Mathieu, M., Couprie, C., Lecun, Y.: Deep multi-scale video prediction beyond mean square error. In: ICLR (2016)

    Google Scholar 

  22. Nazaré, T.S., de Mello, R.F., Ponti, M.A.: Are pre-trained CNNs good feature extractors for anomaly detection in surveillance videos? CoRR abs/1811.08495 (2018). http://arxiv.org/abs/1811.08495

  23. Qiao, M., Wang, T., Li, J., Li, C., Lin, Z., Snoussi, H.: Abnormal event detection based on deep autoencoder fusing optical flow. In: 2017 36th Chinese Control Conference (CCC), pp. 11098–11103 (2017). https://doi.org/10.23919/ChiCC.2017.8029129

  24. Sabokrou, M., Fayyaz, M., Fathy, M., Moayed, Z., Klette, R.: Deep-anomaly: fully convolutional neural network for fast anomaly detection in crowded scenes. Comput. Vis. Image Underst. 172, 88–97 (2018). https://doi.org/10.1016/j.cviu.2018.02.006. https://www.sciencedirect.com/science/article/pii/S1077314218300249

  25. Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H.: Decomposing motion and content for natural video sequence prediction. CoRR abs/1706.08033 (2017). http://arxiv.org/abs/1706.08033

  26. Wang, X., Du, Y., Lin, S., Cui, P., Shen, Y., Yang, Y.: adVAE: a self-adversarial variational autoencoder with gaussian anomaly prior knowledge for anomaly detection. Knowl.-Based Syst. 190, 105187 (2020). https://doi.org/10.1016/j.knosys.2019.105187. https://www.sciencedirect.com/science/article/pii/S0950705119305283

  27. Xu, D., Ricci, E., Yan, Y., Song, J., Sebe, N.: Learning deep representations of appearance and motion for anomalous event detection. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 8.1–8.12. BMVA Press, September 2015. https://doi.org/10.5244/C.29.8

  28. Zhao, Y., Deng, B., Shen, C., Liu, Y., Lu, H., Hua, X.S.: Spatio-temporal autoencoder for video anomaly detection. In: Proceedings of the 25th ACM International Conference on Multimedia, MM 201717, pp. 1933–1941. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3123266.3123451

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Fang, X., Li, F., Yu, L. (2022). Mutual Learning Inspired Prediction Network for Video Anomaly Detection. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13536. Springer, Cham. https://doi.org/10.1007/978-3-031-18913-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18913-5_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18912-8

  • Online ISBN: 978-3-031-18913-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics