Skip to main content

Learning Cross-Domain Features for Domain Generalization on Point Clouds

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13536))

Included in the following conference series:

  • 1736 Accesses

Abstract

Modern deep neural networks trained on a set of source domains are generally difficult to perform well on an unseen target domain with different data statistics. Domain generalization (DG) aims to learn a generalized model that performs well on the unseen target domain. Currently, most DG approaches are applied to images, and there is less related research in the field of point cloud. In this paper, we propose a novel cross-domain feature learning network architecture for DG on 3D object point clouds, which learns domain invariant representation via data augmentation and hierarchical features alignment (HFA). The data augmentation is empowered by two subtasks: (1) A point set mask on source data such that some parts of the point cloud are removed randomly, to capture domain-shared representation of semantic categories; (2) A linear mixup of different source domain point cloud samples, to address the large domain gap between different domains. HFA is used to align multi-level local features and narrow the distribution distance between different domains. Since there is no common evaluation benchmark for 3D point cloud DG scenario, we experiment on the PointDA-10 and PointSegDA datasets, and extend point cloud domain adaptation (DA) methods to DG for comparison. Our method exhibits superiority in classification and segmentation accuracy over state-of-the-art general-purpose DA methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achituve, I., Maron, H., Chechik, G.: Self-supervised learning for domain adaptation on point clouds. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 123–133 (2021)

    Google Scholar 

  2. Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.P., Schölkopf, B., Smola, A.J.: Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14), e49–e57 (2006)

    Article  Google Scholar 

  3. Chang, A.X., et al.: ShapeNet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)

  4. Courty, N., Flamary, R., Habrard, A., Rakotomamonjy, A.: Joint distribution optimal transportation for domain adaptation. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  5. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Niessner, M.: ScanNet: Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  6. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  7. Huang, C., Cao, Z., Wang, Y., Wang, J., Long, M.: Metasets: Meta-learning on point sets for generalizable representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8863–8872 (2021)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: Fast encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12697–12705 (2019)

    Google Scholar 

  10. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Learning to generalize: Meta-learning for domain generalization. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  11. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5400–5409 (2018)

    Google Scholar 

  12. Luo, X., Liu, S., Fu, K., Wang, M., Song, Z.: A learnable self-supervised task for unsupervised domain adaptation on point clouds. arXiv preprint arXiv:2104.05164 (2021)

  13. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

  14. Maron, H., et al.: Convolutional neural networks on surfaces via seamless toric covers. ACM Trans. Graph. 36(4), 71–1 (2017)

    Article  Google Scholar 

  15. Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant feature representation. In: International Conference on Machine Learning, pp. 10–18. PMLR (2013)

    Google Scholar 

  16. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  17. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. Adv. Neural. Inf. Process. Syst. 30, 5099–5108 (2017)

    Google Scholar 

  18. Qin, C., You, H., Wang, L., Kuo, C.C.J., Fu, Y.: PointDAN: A multi-scale 3D domain adaption network for point cloud representation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  19. Vishwanath, K.V., Gupta, D., Vahdat, A., Yocum, K.: ModelNet: Towards a datacenter emulation environment. In: 2009 IEEE Ninth International Conference on Peer-to-Peer Computing, pp. 81–82. IEEE (2009)

    Google Scholar 

  20. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Transactions On Graphics (tog) 38(5), 1–12 (2019)

    Article  Google Scholar 

  21. Wang, Y., Li, H., Kot, A.C.: Heterogeneous domain generalization via domain mixup. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3622–3626. IEEE (2020)

    Google Scholar 

  22. Xu, M., et al.: Adversarial domain adaptation with domain mixup. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6502–6509 (2020)

    Google Scholar 

  23. Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3D object detection and tracking. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11784–11793 (2021)

    Google Scholar 

  24. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  25. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268 (2021)

    Google Scholar 

  26. Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Deep domain-adversarial image generation for domain generalisation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13025–13032 (2020)

    Google Scholar 

  27. Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Learning to generate novel domains for domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 561–578. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_33

    Chapter  Google Scholar 

  28. Zhou, K., Yang, Y., Qiao, Y., Xiang, T.: Domain generalization with mixstyle. arXiv preprint arXiv:2104.02008 (2021)

  29. Zhu, Y., et al.: Deep subdomain adaptation network for image classification. IEEE Trans. Neural Netw. Learn. Syst. 32(4), 1713–1722 (2020)

    Article  MathSciNet  Google Scholar 

  30. Zou, L., Tang, H., Chen, K., Jia, K.: Geometry-aware self-training for unsupervised domain adaptation on object point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6403–6412 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, H., Cheng, M., Shi, L. (2022). Learning Cross-Domain Features for Domain Generalization on Point Clouds. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13536. Springer, Cham. https://doi.org/10.1007/978-3-031-18913-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18913-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18912-8

  • Online ISBN: 978-3-031-18913-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics