Skip to main content

Cascade Scale-Aware Distillation Network for Lightweight Remote Sensing Image Super-Resolution

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13537))

Included in the following conference series:

Abstract

Recently, convolution neural network based methods have dominated the remote sensing image super-resolution (RSISR). However, most of them own complex network structures and a large number of network parameters, which is not friendly to computational resources limited scenarios. Besides, scale variations of objects in the remote sensing image are still challenging for most methods to generate high-quality super-resolution results. To this end, we propose a scale-aware group convolution (SGC) for RSISR. Specifically, each SGC firstly uses group convolutions with different dilation rates for extracting multi-scale features. Then, a scale-aware feature guidance approach and enhancement approach are leveraged to enhance the representation ability of different scale features. Based on SGC, a cascaded scale-aware distillation network (CSDN) is designed, which is composed of multiple SGC based cascade scale-aware distillation blocks (CSDBs). The output of each CSDB will be fused via the backward feature fusion module for final image super-resolution reconstruction. Extensive experiments are performed on the commonly-used UC Merced dataset. Quantitative and qualitative experiment results demonstrate the effectiveness of our method.

This work is supported by the Natural Science Foundation of Hebei Province (F2019201451).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Latif, Z.A., Zaqwan, H.M., Saufi, M., Adnan, N.A., Omar, H.: Deforestation and carbon loss estimation at tropical forest using multispectral remote sensing: case study of Besul Tambahan permanent forest reserve. In: IconSpace, pp. 348–351 (2015)

    Google Scholar 

  2. Ahn, N., Kang, B., Sohn, K.A.: Fast, accurate, and lightweight super-resolution with cascading residual network. In: ECCV, pp. 252–268 (2018)

    Google Scholar 

  3. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: ECCV, pp. 184–199 (2014)

    Google Scholar 

  4. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: ECCV, pp. 391–407 (2016)

    Google Scholar 

  5. Dong, X., Wang, L., Sun, X., Jia, X., Gao, L., Zhang, B.: Remote sensing image super-resolution using second-order multi-scale networks. IEEE T-GRS 59(4), 3473–3485 (2020)

    Google Scholar 

  6. Haut, J.M., Fernandez-Beltran, R., Paoletti, M.E., Plaza, J., Plaza, A., Pla, F.: A new deep generative network for unsupervised remote sensing single-image super-resolution. IEEE T-GRS 56(11), 6792–6810 (2018)

    Google Scholar 

  7. Haut, J.M., Paoletti, M.E., Fernández-Beltran, R., Plaza, J., Plaza, A., Li, J.: Remote sensing single-image superresolution based on a deep compendium model. IEEE GRSL 16(9), 1432–1436 (2019)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  9. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  10. Huan, H., et al.: End-to-end super-resolution for remote-sensing images using an improved multi-scale residual network. Remote Sens. 13(4), 666 (2021)

    Google Scholar 

  11. Hui, Z., Gao, X., Yang, Y., Wang, X.: Lightweight image super-resolution with information multi-distillation network. In: ACM MM, pp. 2024–2032 (2019)

    Google Scholar 

  12. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: CVPR, pp. 1637–1645 (2016)

    Google Scholar 

  13. Lei, S., Shi, Z.: Hybrid-scale self-similarity exploitation for remote sensing image super-resolution. IEEE T-GRS 60, 1–10 (2021)

    Google Scholar 

  14. Lei, S., Shi, Z., Zou, Z.: Super-resolution for remote sensing images via local-global combined network. IEEE GRSL 14(8), 1243–1247 (2017)

    Google Scholar 

  15. Li, D., Liu, J., Zhou, Q., Wang, L., Huang, Q.: Study on information extraction of rape acreage based on TM remote sensing image. In: IGARSS, pp. 3323–3326 (2011)

    Google Scholar 

  16. Li, X., Zhou, T., Li, J., Zhou, Y., Zhang, Z.: Group-wise semantic mining for weakly supervised semantic segmentation. In: AAAI, vol. 35, pp. 1984–1992 (2021)

    Google Scholar 

  17. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  18. Liu, J., Tang, J., Wu, G.: Residual feature distillation network for lightweight image super-resolution. In: ECCV, pp. 41–55 (2020)

    Google Scholar 

  19. Lu, H., Lu, Y., Li, G., Sun, Y., Wang, S., Li, Y.: Scale-aware distillation network for lightweight image super-resolution. In: PRCV, pp. 128–139 (2021)

    Google Scholar 

  20. Luo, X., Xie, Y., Zhang, Y., Qu, Y., Li, C., Fu, Y.: LatticeNet: towards lightweight image super-resolution with lattice block. In: ECCV, pp. 272–289 (2020)

    Google Scholar 

  21. Mei, Y., Fan, Y., Zhou, Y., Huang, L., Huang, T.S., Shi, H.: Image super-resolution with cross-scale non-local attention and exhaustive self-exemplars mining. In: CVPR, pp. 5690–5699 (2020)

    Google Scholar 

  22. Pan, Z., Ma, W., Guo, J., Lei, B.: Super-resolution of single remote sensing image based on residual dense backprojection networks. IEEE T-GRS 57(10), 7918–7933 (2019)

    Google Scholar 

  23. Tang, Z., Chen, Q., Wang, X.: Meteorological observation station’s environment identification base on remote sensing image. In: AIMSEC, pp. 4056–4060 (2011)

    Google Scholar 

  24. Wang, S., Zhou, T., Lu, Y., Di, H.: Detail preserving transformer for light field image super-resolution. In: AAAI, vol. 36, pp. 2522–2530 (2022)

    Google Scholar 

  25. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR, pp. 7794–7803 (2018)

    Google Scholar 

  26. Wang, X., Wu, Y., Ming, Y., Lv, H.: Remote sensing imagery super resolution based on adaptive multi-scale feature fusion network. Sensors 20(4), 1142 (2020)

    Article  Google Scholar 

  27. Wang, Y., Lu, Y., Wang, S., Zhang, W., Wang, Z.: Local-global feature aggregation for light field image super-resolution. In: ICASSP, pp. 2160–2164 (2022)

    Google Scholar 

  28. Wang, Z., Lu, Y., Li, W., Wang, S., Wang, X., Chen, X.: Single image super-resolution with attention-based densely connected module. Neurocomputing 453, 876–884 (2021)

    Article  Google Scholar 

  29. Xu, W., Xu, G., Wang, Y., Sun, X., Lin, D., Wu, Y.: Deep memory connected neural network for optical remote sensing image restoration. Remote Sens. 10(12), 1893 (2018)

    Article  Google Scholar 

  30. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE TIP 19(11), 2861–2873 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 270–279 (2010)

    Google Scholar 

  32. Zhou, T., Li, J., Wang, S., Tao, R., Shen, J.: MATNet: motion-attentive transition network for zero-shot video object segmentation. IEEE TIP 29, 8326–8338 (2020)

    MATH  Google Scholar 

  33. Zhou, T., Li, L., Li, X., Feng, C.M., Li, J., Shao, L.: Group-wise learning for weakly supervised semantic segmentation. IEEE TIP 31, 799–811 (2021)

    Google Scholar 

  34. Zhou, T., Qi, S., Wang, W., Shen, J., Zhu, S.C.: Cascaded parsing of human-object interaction recognition 44(6), 2827–2840 (2021)

    Google Scholar 

  35. Zhou, T., Wang, S., Zhou, Y., Yao, Y., Li, J., Shao, L.: Motion-attentive transition for zero-shot video object segmentation. In: AAAI, vol. 34, pp. 13066–13073 (2020)

    Google Scholar 

  36. Zhou, T., Wang, W., Qi, S., Ling, H., Shen, J.: Cascaded human-object interaction recognition. In: CVPR, pp. 4263–4272 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijun Di .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, H., Di, H., Wang, S., Shi, Q. (2022). Cascade Scale-Aware Distillation Network for Lightweight Remote Sensing Image Super-Resolution. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13537. Springer, Cham. https://doi.org/10.1007/978-3-031-18916-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18916-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18915-9

  • Online ISBN: 978-3-031-18916-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics