Skip to main content

ORION: Orientation-Sensitive Object Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13537))

Included in the following conference series:

  • 1420 Accesses

Abstract

Object detection is of great importance to intelligent stockbreeding applications, but currently, basic tools like models and datasets are still in shortage in specific livestock breeding circumstances. In this paper, we build a cattle object detection dataset with real oriented bounding box (ROBB) annotation. In particular, this dataset is single-category, multiple-instance per frame, and has body-direction-aligned orientation and non-rigid targets. Benchmark models are investigated with our proposed orientation-sensitive IOU algorithm \(COS\text {-}IOU\) and angle-related loss CosAngleLoss. The combination of these two modules outperforms baseline IOU algorithms and MSE angle loss in a more strict angle-confined criterion. This work is a pioneering exploration in non-rigid oriented object detection with orientation in \([0,2\pi )\), it will shed light on similar issues with single-category, non-rigid, oriented object detection in the stockbreeding and manufacturing industry. Code is available at https://github.com/guowenk/cattle-robb and the dataset will be released to the public later.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/cgvict/roLabelImg.

References

  1. Andrew, W., Gao, J., Mullan, S., Campbell, N., Dowsey, A.W., Burghardt, T.: Visual identification of individual Holstein-Friesian cattle via deep metric learning. Comput. Electron. Agric. 185, 106133 (2021). https://doi.org/10.1016/j.compag.2021.106133, https://www.sciencedirect.com/science/article/pii/S0168169921001514

  2. Andrew, W., Greatwood, C., Burghardt, T.: Visual localisation and individual identification of Holstein Friesian cattle via deep learning. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 2850–2859 (2017). https://doi.org/10.1109/ICCVW.2017.336

  3. Andrew, W., Greatwood, C., Burghardt, T.: Aerial animal biometrics: individual Friesian cattle recovery and visual identification via an autonomous UAV with onboard deep inference. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 237–243 (2019). https://doi.org/10.1109/IROS40897.2019.8968555

  4. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  5. Chen, Z., et al.: PIoU loss: towards accurate oriented object detection in complex environments. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 195–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_12

    Chapter  Google Scholar 

  6. Ch’ng, C.-K., Chan, C.S., Liu, C.-L.: Total-text: toward orientation robustness in scene text detection. Int. J. Doc. Anal. Recogn. (IJDAR) 23(1), 31–52 (2019). https://doi.org/10.1007/s10032-019-00334-z

    Article  Google Scholar 

  7. Ding, J., Xue, N., Long, Y., Xia, G.S., Lu, Q.: Learning ROI transformer for oriented object detection in aerial images. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2844–2853 (2019). https://doi.org/10.1109/CVPR.2019.00296

  8. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6568–6577 (2019). https://doi.org/10.1109/ICCV.2019.00667

  9. Gao, J., Burghardt, T., Andrew, W., Dowsey, A.W., Campbell, N.W.: Towards self-supervision for video identification of individual Holstein-Friesian cattle: the cows2021 dataset (2021). https://doi.org/10.48550/ARXIV.2105.01938, https://arxiv.org/abs/2105.01938

  10. Gardenier, J., Underwood, J., Clark, C.: Object detection for cattle gait tracking. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2206–2213 (2018). https://doi.org/10.1109/ICRA.2018.8460523

  11. Girshick, R.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015). https://doi.org/10.1109/ICCV.2015.169

  12. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014). https://doi.org/10.1109/CVPR.2014.81

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  14. Hu, H., et al.: Cow identification based on fusion of deep parts features. Biosyst. Eng. 192, 245–256 (2020). https://doi.org/10.1016/j.biosystemseng.2020.02.001, https://www.sciencedirect.com/science/article/pii/S1537511020300416

  15. Jiang, Y., et al.: R2CNN: rotational region CNN for orientation robust scene text detection (2017). https://doi.org/10.48550/ARXIV.1706.09579, https://arxiv.org/abs/1706.09579

  16. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. Int. J. Comput. Vision 128(3), 642–656 (2019). https://doi.org/10.1007/s11263-019-01204-1

    Article  Google Scholar 

  17. Lin, T., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(02), 318–327 (2020). https://doi.org/10.1109/TPAMI.2018.2858826

  18. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  19. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10012–10022 (2021)

    Google Scholar 

  20. Liu, Z., Wang, H., Weng, L., Yang, Y.: Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds. IEEE Geosci. Remote Sens. Lett. 13(8), 1074–1078 (2016). https://doi.org/10.1109/LGRS.2016.2565705

    Article  Google Scholar 

  21. Ma, J., Shao, W., Ye, H., Wang, L., Wang, H., Zheng, Y., Xue, X.: Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans. Multimedia 20(11), 3111–3122 (2018). https://doi.org/10.1109/tmm.2018.2818020

  22. Neumann, L., Matas, J.: Efficient scene text localization and recognition with local character refinement. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 746–750 (2015). https://doi.org/10.1109/ICDAR.2015.7333861

  23. Qiao, Y., Su, D., Kong, H., Sukkarieh, S., Lomax, S., Clark, C.: Individual cattle identification using a deep learning based framework. IFAC-PapersOnLine 52(30), 318–323 (2019). https://doi.org/10.1016/j.ifacol.2019.12.558, https://www.sciencedirect.com/science/article/pii/S2405896319324772, 6th IFAC Conference on Sensing, Control and Automation Technologies for Agriculture AGRICONTROL 2019

  24. Qiao, Y., Su, D., Kong, H., Sukkarieh, S., Lomax, S., Clark, C.: BiLSTM-based individual cattle identification for automated precision livestock farming. In: 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), pp. 967–972 (2020). https://doi.org/10.1109/CASE48305.2020.9217026

  25. Qiao, Y., Su, D., Kong, H., Sukkarieh, S., Lomax, S., Clark, C.: Data augmentation for deep learning based cattle segmentation in precision livestock farming. In: 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), pp. 979–984 (2020). https://doi.org/10.1109/CASE48305.2020.9216758

  26. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

  27. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement (2018)

    Google Scholar 

  28. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  29. Shi, B., et al.: ICDAR 2017 competition on reading Chinese text in the wild (RCTW-17). In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 1429–1434 (2017). https://doi.org/10.1109/ICDAR.2017.233

  30. Xia, G.S., et al.: DOTA: a large-scale dataset for object detection in aerial images. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3974–3983 (2018). https://doi.org/10.1109/CVPR.2018.00418

  31. Xie, X., Cheng, G., Wang, J., Yao, X., Han, J.: Oriented R-CNN for object detection. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3500–3509 (2021). https://doi.org/10.1109/ICCV48922.2021.00350

  32. Yang, X., et a.: Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks. Remote Sens. 10(1) (2018). https://doi.org/10.3390/rs10010132, https://www.mdpi.com/2072-4292/10/1/132

  33. Yang, X., Sun, H., Sun, X., Yan, M., Guo, Z., Fu, K.: Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network. IEEE Access 6, 50839–50849 (2018). https://doi.org/10.1109/ACCESS.2018.2869884

    Article  Google Scholar 

  34. Yang, X., Yan, J.: On the arbitrary-oriented object detection: classification based approaches revisited. Int. J. Comput. Vision (3), 1–26 (2022). https://doi.org/10.1007/s11263-022-01593-w

  35. Yang, X., Yan, J., Feng, Z., He, T.: R3DET: refined single-stage detector with feature refinement for rotating object. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 4, pp. 3163–3171, May 2021. https://ojs.aaai.org/index.php/AAAI/article/view/16426

  36. Yi, J., Wu, P., Liu, B., Huang, Q., Qu, H., Metaxas, D.: Oriented object detection in aerial images with box boundary-aware vectors. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2149–2158 (2021). https://doi.org/10.1109/WACV48630.2021.00220

  37. Zand, M., Etemad, A., Greenspan, M.: Oriented bounding boxes for small and freely rotated objects. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2022). https://doi.org/10.1109/TGRS.2021.3076050

    Article  Google Scholar 

  38. Zhang, T., et al.: Sar ship detection dataset (SSDD): official release and comprehensive data analysis. Remote Sens. 13(18) (2021). https://doi.org/10.3390/rs13183690

  39. Zhang, Z., Guo, W., Zhu, S., Yu, W.: Toward arbitrary-oriented ship detection with rotated region proposal and discrimination networks. IEEE Geosci. Remote Sens. Lett. 15(11), 1745–1749 (2018). https://doi.org/10.1109/LGRS.2018.2856921

    Article  Google Scholar 

  40. Zhong, B., Ao, K.: Single-stage rotation-decoupled detector for oriented object. Remote Sens. 12(19) (2020). https://doi.org/10.3390/rs12193262, https://www.mdpi.com/2072-4292/12/19/3262

  41. Zhou, D., et al.: IOU loss for 2D/3D object detection. In: 2019 International Conference on 3D Vision (3DV), pp. 85–94 (2019). https://doi.org/10.1109/3DV.2019.00019

  42. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points (2019). https://doi.org/10.48550/ARXIV.1904.07850, https://arxiv.org/abs/1904.07850

  43. Zhou, X., Zhuo, J., Krähenbühl, P.: Bottom-up object detection by grouping extreme and center points. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 850–859 (2019). https://doi.org/10.1109/CVPR.2019.00094

  44. Zhu, H., Chen, X., Dai, W., Fu, K., Ye, Q., Jiao, J.: Orientation robust object detection in aerial images using deep convolutional neural network. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3735–3739 (2015). https://doi.org/10.1109/ICIP.2015.7351502

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowen Kuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xia, J., Kuang, G., Wang, X., Chen, Z., Yang, J. (2022). ORION: Orientation-Sensitive Object Detection. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13537. Springer, Cham. https://doi.org/10.1007/978-3-031-18916-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18916-6_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18915-9

  • Online ISBN: 978-3-031-18916-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics