Skip to main content

Identification Method for Rice Pests with Small Sample Size Problems Combining Deep Learning and Metric Learning

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Abstract

To achieve accurate identification of rice pests with small sample size problems under complex backgrounds, we proposed a rice pest identification method combining deep learning and metric learning. To overcome the effect of the complex background of the rice pest image, we used the U-Net network which can well retain target information and has a good segmentation effect on rice pests with small sample size problems to remove the background. We also improved the backbone network of VGG16 to extract a more effective feature for identification. Finally, we introduced metric learning to project the feature vector of the pest image to a new feature space for similarity matching and solve the lower accuracy caused by the small sample size. Experimental results showed that the accuracy of the proposed method is better than that of SVM, kNN, AlexNet, VGGNet and Mobilenet. Thus, our method could accurately identify rice pests with small sample size problems under complex rice backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www2.ahu.edu.cn/pchen/web/insectRecognition.htm.

References

  1. Deng, L., Wang, Y., Han, Z., Yu, R.: Research on insect pest image detection and recognition based on bio-inspired methods. Biosyst. Eng. 169, 139–148 (2018)

    Article  Google Scholar 

  2. Liu, T., Chen, W., Wu, W., Sun, C., Guo, W., Zhu, X.: Detection of aphids in wheat fields using a computer vision technique. Biosyst. Eng. 141, 82–93 (2016)

    Article  Google Scholar 

  3. Xie, C., et al.: Automatic classification for field crop insects via multiple-task sparse representation and multiple-kernel learning. Comput. Electron. Agric. 119, 123–132 (2015)

    Article  Google Scholar 

  4. Larios, N., Soran, B., Shapiro, L.G., Martínez-Muñoz, G., Lin, J., Dietterich, T.G.: Haar random forest features and SVM spatial matching kernel for stonefly species identification. In: 2010 20th International Conference on Pattern Recognition, pp. 2624–2627. IEEE (2010)

    Google Scholar 

  5. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)

  6. Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: Joint detection and identification feature learning for person search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3415–3424 (2017)

    Google Scholar 

  7. Chen, X., Xiang, S., Liu, C.L., Pan, C.H.: Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 11(10), 1797–1801 (2014)

    Article  Google Scholar 

  8. Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., Toderici, G.: Beyond short snippets: deep networks for video classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4694–4702 (2015)

    Google Scholar 

  9. Hu, G., Wu, H., Zhang, Y., Wan, M.: A low shot learning method for tea leaf’s disease identification. Comput. Electron. Agric. 163, 104852 (2019)

    Article  Google Scholar 

  10. Ding, W., Taylor, G.: Automatic moth detection from trap images for pest management. Comput. Electron. Agric. 123, 17–28 (2016)

    Article  Google Scholar 

  11. Ramcharan, A., Baranowski, K., McCloskey, P., Ahmed, B., Legg, J., Hughes, D.P.: Deep learning for image-based cassava disease detection. Front. Plant Sci. 8, 1852 (2017)

    Article  Google Scholar 

  12. Shen, Y., Zhou, H., Li, J., Jian, F., Jayas, D.S.: Detection of stored-grain insects using deep learning. Comput. Electron. Agric. 145, 319–325 (2018)

    Article  Google Scholar 

  13. Liu, L., et al.: PestNet: an end-to-end deep learning approach for large-scale multi-class pest detection and classification. IEEE Access 7, 45301–45312 (2019)

    Article  Google Scholar 

  14. Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 1419 (2016)

    Article  Google Scholar 

  15. Brahimi, M., Boukhalfa, K., Moussaoui, A.: Deep learning for tomato diseases: classification and symptoms visualization. Appl. Artif. Intell. 31(4), 299–315 (2017)

    Article  Google Scholar 

  16. Lu, J., Hu, J., Zhao, G., Mei, F., Zhang, C.: An in-field automatic wheat disease diagnosis system. Comput. Electron. Agric. 142, 369–379 (2017)

    Article  Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  18. Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018)

    Article  Google Scholar 

  19. Sainath, T.N.: Deep convolutional neural networks for LVCSR. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 8614, p. 8618 (2013)

    Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  21. Boureau, Y.L., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for recognition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2559–2566. IEEE (2010)

    Google Scholar 

  22. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10(2) (2009)

    Google Scholar 

  23. MacQueen, J.: Classification and analysis of multivariate observations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  24. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut” interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (TOG) 23(3), 309–314 (2004)

    Article  Google Scholar 

  25. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by Natural Science Foundation of Anhui Province, China, under Grant No. 2108085MC95, and the University Natural Science Research Project of Anhui Province under Grant Nos. KJ2020ZD03 and KJ2020A0039, and the open research fund of the National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, under Grant No. AE202004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihui Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, G., Tang, X., Zeng, W., Liang, D., Yang, X. (2022). Identification Method for Rice Pests with Small Sample Size Problems Combining Deep Learning and Metric Learning. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13537. Springer, Cham. https://doi.org/10.1007/978-3-031-18916-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18916-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18915-9

  • Online ISBN: 978-3-031-18916-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics