Skip to main content

JFT: A Robust Visual Tracker Based on Jitter Factor and Global Registration

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13537))

Included in the following conference series:

  • 1459 Accesses

Abstract

Visual object tracking is an important yet challenging task in computer vision, whose accuracy is highly subject to the problems of camera motion/shake and occlusion. In order to solve these two challenging problems and improve the tracking accuracy of real scenes, this paper proposed a robust visual object tracker based on Jitter Factor and global registration. The proposed tracker firstly extracts the histogram of oriented gradient (HOG) features and color features of the target object to train the correlation filter. When the response map is unreliable, the proposed tracker treats the tracking problems as a global background motion and target motion problem, and then evaluates the state (tracking or missing) of the target by using Jitter Factor. If the target is assumed to be missing, global image registration and correlated Kalman filter would be applied to correct and predict the corrected target position. Experimental results on RGB-T234 show that after introducing the proposed Jitter Factor and global image registration, the correlation-filter-based trackers gained a ≥ 2.2% increase in precision rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 13 (2006)

    Article  Google Scholar 

  2. Ali, A., et al.: Visual object tracking—classical and contemporary approaches. Front. Comput. Sci. 10(1), 167–188 (2016). https://doi.org/10.1007/s11704-015-4246-3

    Article  Google Scholar 

  3. Carreira-Perpián, M.: A review of mean-shift algorithms for clustering. Computer Science (2015)

    Google Scholar 

  4. Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2012)

    Google Scholar 

  5. Bolme, D.S., Beveridge, J.R., Draper, B.A., et al.: Visual object tracking using adaptive correlation filters. In: The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010, San Francisco, pp. 1822–1829. IEEE (2010)

    Google Scholar 

  6. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_50

    Chapter  Google Scholar 

  7. Henriques, J.F., Caseiro, R., Martins, P., et al.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)

    Article  Google Scholar 

  8. Danelljan, M., Häger, G., Khan, F.S., et al.: Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference (2014)

    Google Scholar 

  9. Danelljan, M., Häger, G., et al.: Discriminative scale space tracking. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1561–1575 (2017)

    Article  Google Scholar 

  10. Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 254–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5_18

    Chapter  Google Scholar 

  11. Danelljan, M., Hger, G., Khan, F.S., et al.: Learning spatially regularized correlation filters for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4310–4318 (2016)

    Google Scholar 

  12. Danelljan, M., Hager, G., Khan, F.S., et al.: Convolutional features for correlation filter based visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 58–66 (2015)

    Google Scholar 

  13. Chao, M., Huang, J.B., Yang, X., et al.: Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3074–3082 (2016)

    Google Scholar 

  14. Li, F., Tian, C., Zuo, W., et al.: Learning spatial-temporal regularized correlation filters for visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4904–4913 (2018)

    Google Scholar 

  15. Danelljan, M., Robinson, A., Shahbaz Khan, F., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 472–488. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_29

    Chapter  Google Scholar 

  16. Danelljan, M., Bhat, G., Khan, F.S., et al.: ECO: efficient convolution operators for tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6638–6646 (2016)

    Google Scholar 

  17. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  18. Boyd, S., Parikh, N., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)

    Article  Google Scholar 

  19. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  20. Danelljan, M., Khan, F.S., Felsberg, M., et al.: Adaptive color attributes for real-time visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 1090–1097. IEEE (2014)

    Google Scholar 

  21. Danelljan, M., et al.: Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference, Nottingham (2014)

    Google Scholar 

  22. Dai, K., Wang, D., Lu, H., et al.: Visual tracking via adaptive spatially-regularized correlation filters. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2019YFC1511102) and the National Natural Science Foundation of China (No. 12002215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueqiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H. et al. (2022). JFT: A Robust Visual Tracker Based on Jitter Factor and Global Registration. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13537. Springer, Cham. https://doi.org/10.1007/978-3-031-18916-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18916-6_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18915-9

  • Online ISBN: 978-3-031-18916-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics