Abstract
Automatic monkey pose estimation is of great potential for quantitative behavior analysis of monkeys, which provides indispensable information for the studies of drug safety assessments and medical trials. With the development of deep learning, the performance of human pose estimation has been greatly improved, however, the study of monkey pose estimation is rare and the robustness of performance is unsatisfactory due to the lack of data and the variations of monkey poses. In this work, we propose a complete solution to address these problems in terms of data and methodology. For data, we collect a comprehensive Caged Monkey Dataset with 6021 samples, with labeled poses. For methodology, we propose a Mask Guided Attention Network (MGAN) to focus on the foreground target automatically so as to locate the occluded keypoints precisely and deal with the complex monkey postures. The proposed method is evaluated on the collected monkey dataset, achieving 79.2 Average Precision (AP), which is 6.1 improvement over the baseline method and is comparable with the state-of-the-art performance of human pose estimation. We hope our attempt on caged monkey pose estimation will serve as a regular configuration in drug safety assessments and medical trials in the future.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acharya, U.R., Molinari, F., Sree, S.V., Chattopadhyay, S., Ng, K.H., Suri, J.S.: Automated diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 7(4), 401–408 (2012)
Badger, M., Wang, Y., Modh, A., Perkes, A., Kolotouros, N., Pfrommer, B.G., Schmidt, M.F., Daniilidis, K.: 3D bird reconstruction: a dataset, model, and shape recovery from a single view. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 1–17. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_1
Bala, P.C., Eisenreich, B.R., Yoo, S.B.M., Hayden, B.Y., Park, H.S., Zimmermann, J.: Automated markerless pose estimation in freely moving macaques with openmonkeystudio. Nat. Commun. 11(1), 1–12 (2020)
Cao, J., Tang, H., Fang, H.S., Shen, X., Lu, C., Tai, Y.W.: Cross-domain adaptation for animal pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9498–9507 (2019)
Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)
Ebeling, M., et al.: Genome-based analysis of the nonhuman primate macaca fascicularis as a model for drug safety assessment. Genome Res. 21(10), 1746–1756 (2011)
Graving, J.M., et al.: Deepposekit, a software toolkit for fast and robust animal pose estimation using deep learning. Elife 8, e47994 (2019)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-CNN. In: Proceedings of the IEEE international conference on computer vision, pp. 2961–2969 (2017)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects in context. In: European Conference on Computer Vision, pp. 740–755. Springer (2014)
Mathis, A., et al.: Pretraining boosts out-of-domain robustness for pose estimation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1859–1868 (2021)
Mathis, A., et al.: Deeplabcut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21(9), 1281–1289 (2018)
Meiburger, K.M., Acharya, U.R., Molinari, F.: Automated localization and segmentation techniques for b-mode ultrasound images: a review. Comput. Biol. Med. 92, 210–235 (2018)
Mu, J., Qiu, W., Hager, G.D., Yuille, A.L.: Learning from synthetic animals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12386–12395 (2020)
Negrete, S.B., Labuguen, R., Matsumoto, J., Go, Y., Inoue, K.I., Shibata, T.: Multiple monkey pose estimation using openpose. bioRxiv (2021)
Newell, A., Yang, K., Deng, J.: Stacked Hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29
Plagenhoef, M.R., Callahan, P.M., Beck, W.D., Blake, D.T., Terry, A.V., Jr.: Aged rhesus monkeys: cognitive performance categorizations and preclinical drug testing. Neuropharmacology 187, 108489 (2021)
Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)
Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional network and a graphical model for human pose estimation. In: Advances in Neural Information Processing Systems, vol. 27 (2014)
Xia, F., Wang, P., Chen, X., Yuille, A.L.: Joint multi-person pose estimation and semantic part segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6769–6778 (2017)
Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 466–481 (2018)
Yu, H., Xu, Y., Zhang, J., Zhao, W., Guan, Z., Tao, D.: Ap-10k: A benchmark for animal pose estimation in the wild. arXiv preprint arXiv:2108.12617 (2021)
Zhang, F., Zhu, X., Dai, H., Ye, M., Zhu, C.: Distribution-aware coordinate representation for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7093–7102 (2020)
Zhang, Z., Tang, J., Wu, G.: Simple and lightweight human pose estimation. arXiv preprint arXiv:1911.10346 (2019)
Zhou, F., et al.: Structured context enhancement network for mouse pose estimation. In: IEEE Transactions on Circuits and Systems for Video Technology (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sun, Z., Zhu, X., Lei, Z., Ma, X. (2022). Caged Monkey Dataset: A New Benchmark for Caged Monkey Pose Estimation. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13537. Springer, Cham. https://doi.org/10.1007/978-3-031-18916-6_55
Download citation
DOI: https://doi.org/10.1007/978-3-031-18916-6_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18915-9
Online ISBN: 978-3-031-18916-6
eBook Packages: Computer ScienceComputer Science (R0)