Skip to main content

Caged Monkey Dataset: A New Benchmark for Caged Monkey Pose Estimation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Abstract

Automatic monkey pose estimation is of great potential for quantitative behavior analysis of monkeys, which provides indispensable information for the studies of drug safety assessments and medical trials. With the development of deep learning, the performance of human pose estimation has been greatly improved, however, the study of monkey pose estimation is rare and the robustness of performance is unsatisfactory due to the lack of data and the variations of monkey poses. In this work, we propose a complete solution to address these problems in terms of data and methodology. For data, we collect a comprehensive Caged Monkey Dataset with 6021 samples, with labeled poses. For methodology, we propose a Mask Guided Attention Network (MGAN) to focus on the foreground target automatically so as to locate the occluded keypoints precisely and deal with the complex monkey postures. The proposed method is evaluated on the collected monkey dataset, achieving 79.2 Average Precision (AP), which is 6.1 improvement over the baseline method and is comparable with the state-of-the-art performance of human pose estimation. We hope our attempt on caged monkey pose estimation will serve as a regular configuration in drug safety assessments and medical trials in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acharya, U.R., Molinari, F., Sree, S.V., Chattopadhyay, S., Ng, K.H., Suri, J.S.: Automated diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 7(4), 401–408 (2012)

    Article  Google Scholar 

  2. Badger, M., Wang, Y., Modh, A., Perkes, A., Kolotouros, N., Pfrommer, B.G., Schmidt, M.F., Daniilidis, K.: 3D bird reconstruction: a dataset, model, and shape recovery from a single view. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 1–17. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_1

    Chapter  Google Scholar 

  3. Bala, P.C., Eisenreich, B.R., Yoo, S.B.M., Hayden, B.Y., Park, H.S., Zimmermann, J.: Automated markerless pose estimation in freely moving macaques with openmonkeystudio. Nat. Commun. 11(1), 1–12 (2020)

    Article  Google Scholar 

  4. Cao, J., Tang, H., Fang, H.S., Shen, X., Lu, C., Tai, Y.W.: Cross-domain adaptation for animal pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9498–9507 (2019)

    Google Scholar 

  5. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)

    Google Scholar 

  6. Ebeling, M., et al.: Genome-based analysis of the nonhuman primate macaca fascicularis as a model for drug safety assessment. Genome Res. 21(10), 1746–1756 (2011)

    Article  Google Scholar 

  7. Graving, J.M., et al.: Deepposekit, a software toolkit for fast and robust animal pose estimation using deep learning. Elife 8, e47994 (2019)

    Article  Google Scholar 

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-CNN. In: Proceedings of the IEEE international conference on computer vision, pp. 2961–2969 (2017)

    Google Scholar 

  9. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  10. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects in context. In: European Conference on Computer Vision, pp. 740–755. Springer (2014)

    Google Scholar 

  11. Mathis, A., et al.: Pretraining boosts out-of-domain robustness for pose estimation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1859–1868 (2021)

    Google Scholar 

  12. Mathis, A., et al.: Deeplabcut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21(9), 1281–1289 (2018)

    Article  Google Scholar 

  13. Meiburger, K.M., Acharya, U.R., Molinari, F.: Automated localization and segmentation techniques for b-mode ultrasound images: a review. Comput. Biol. Med. 92, 210–235 (2018)

    Article  Google Scholar 

  14. Mu, J., Qiu, W., Hager, G.D., Yuille, A.L.: Learning from synthetic animals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12386–12395 (2020)

    Google Scholar 

  15. Negrete, S.B., Labuguen, R., Matsumoto, J., Go, Y., Inoue, K.I., Shibata, T.: Multiple monkey pose estimation using openpose. bioRxiv (2021)

    Google Scholar 

  16. Newell, A., Yang, K., Deng, J.: Stacked Hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  17. Plagenhoef, M.R., Callahan, P.M., Beck, W.D., Blake, D.T., Terry, A.V., Jr.: Aged rhesus monkeys: cognitive performance categorizations and preclinical drug testing. Neuropharmacology 187, 108489 (2021)

    Article  Google Scholar 

  18. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  19. Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional network and a graphical model for human pose estimation. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  20. Xia, F., Wang, P., Chen, X., Yuille, A.L.: Joint multi-person pose estimation and semantic part segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6769–6778 (2017)

    Google Scholar 

  21. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 466–481 (2018)

    Google Scholar 

  22. Yu, H., Xu, Y., Zhang, J., Zhao, W., Guan, Z., Tao, D.: Ap-10k: A benchmark for animal pose estimation in the wild. arXiv preprint arXiv:2108.12617 (2021)

  23. Zhang, F., Zhu, X., Dai, H., Ye, M., Zhu, C.: Distribution-aware coordinate representation for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7093–7102 (2020)

    Google Scholar 

  24. Zhang, Z., Tang, J., Wu, G.: Simple and lightweight human pose estimation. arXiv preprint arXiv:1911.10346 (2019)

  25. Zhou, F., et al.: Structured context enhancement network for mouse pose estimation. In: IEEE Transactions on Circuits and Systems for Video Technology (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xibo Ma .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2297 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Z., Zhu, X., Lei, Z., Ma, X. (2022). Caged Monkey Dataset: A New Benchmark for Caged Monkey Pose Estimation. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13537. Springer, Cham. https://doi.org/10.1007/978-3-031-18916-6_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18916-6_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18915-9

  • Online ISBN: 978-3-031-18916-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics