Skip to main content

SUDANet: A Siamese UNet with Dense Attention Mechanism for Remote Sensing Image Change Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13537))

Included in the following conference series:

  • 1790 Accesses

Abstract

Change detection is one of the main applications of remote sensing images. Pixel-to-pixel change detection using deep learning has been a hot research spot. However, the current approach are not effective enough to fuse deep semantic features and raw spatial information, and the network does not have the ability to perform long-distance information aggregation due to the limitation of the convolutional kernel size. In this manuscript, we propose a Siamese UNet with a dense attention mechanism, named SUDANet to do change detection for remote sensing images. SUDANet add a channel attention mechanism and a self-attention mechanism to the dense skip connection between encoder and decoder which enable the model to fuse feature information in channel dimensions and spatial dimensions. Graph attention module is also added at the end of the encoder, enabling the model to perform correlation analysis and long-distance aggregation of deep semantic features. The experimental results on LEVIR dataset show that our method outperforms the state-of-the-art change detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shao, R., Du, C., Chen, H., Li, J.: SUNet: change detection for heterogeneous remote sensing images from satellite and UAV using a dual-channel fully convolution network. Remote Sens. 13(18), 3750 (2021)

    Article  Google Scholar 

  2. Willis, K.S.: Remote sensing change detection for ecological monitoring in united states protected areas. Biol. Cons. 182, 233–242 (2015)

    Article  Google Scholar 

  3. Madasa, A., Orimoloye, I.R., Ololade, O.O.: Application of geospatial indices for mapping land cover/use change detection in a mining area. J. Afr. Earth Sci. 175, 104108 (2021)

    Article  Google Scholar 

  4. Huang, F., Chen, L., Yin, K., Huang, J., Gui, L.: Object-oriented change detection and damage assessment using high-resolution remote sensing images, Tangjiao landslide, three gorges reservoir, china. Environ. Earth Sci. 77(5), 1–19 (2018)

    Article  Google Scholar 

  5. Ji, S., Shen, Y., Lu, M., Zhang, Y.: Building instance change detection from large-scale aerial images using convolutional neural networks and simulated samples. Remote Sens. 11(11), 1343 (2019)

    Article  Google Scholar 

  6. Xu, Y., Li, J., Du, C., Chen, H.: NBR-Net: a non-rigid bi-directional registration network for multi-temporal remote sensing images. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2022)

    Google Scholar 

  7. Xu, Y., Chen, H., Du, C., Li, J.: MSACon: mining spatial attention-based contextual information for road extraction. IEEE Trans. Geosci. Remote Sens. 60, 1–17 (2021)

    Google Scholar 

  8. Song, J., Li, J., Chen, H., Wu, J.: MapGen-GAN: a fast translator for remote sensing image to map via unsupervised adversarial learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 2341–2357 (2021)

    Article  Google Scholar 

  9. Song, J., Li, J., Chen, H., Wu, J.: RSMT: a remote sensing image-to-map translation model via adversarial deep transfer learning. Remote Sens. 14(4), 919 (2022)

    Article  Google Scholar 

  10. Khelifi, L., Mignotte, M.: Deep learning for change detection in remote sensing images: comprehensive review and meta-analysis. IEEE Access 8, 126385–126400 (2020)

    Article  Google Scholar 

  11. Alexakis, E.B., Armenakis, C.: Evaluation of UNet and UNet++ architectures in high resolution image change detection applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 43, 1507–1514 (2020)

    Article  Google Scholar 

  12. Jaturapitpornchai, R., Matsuoka, M., Kanemoto, N., Kuzuoka, S., Ito, R., Nakamura, R.: Newly built construction detection in SAR images using deep learning. Remote Sens. 11(12), 1444 (2019)

    Article  Google Scholar 

  13. Peng, D., Zhang, Y., Guan, H.: End-to-end change detection for high resolution satellite images using improved UNet++. Remote Sens. 11(11), 1382 (2019)

    Article  Google Scholar 

  14. Daudt, R.C., Le Saux, B., Boulch, A.: Fully convolutional siamese networks for change detection. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 4063–4067. IEEE (2018)

    Google Scholar 

  15. Chen, H., Shi, Z.: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sens. 12(10), 1662 (2020)

    Article  Google Scholar 

  16. Zhang, C., et al.: A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. ISPRS J. Photogramm. Remote. Sens. 166, 183–200 (2020)

    Article  Google Scholar 

  17. Fang, S., Li, K., Shao, J., Li, Z.: SNUNet-CD: a densely connected Siamese network for change detection of VHR images. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)

    Google Scholar 

  18. Zi, W., Xiong, W., Chen, H., Li, J., Jing, N.: SGA-Net: self-constructing graph attention neural network for semantic segmentation of remote sensing images. Remote Sens. 13(21), 4201 (2021)

    Article  Google Scholar 

  19. Peng, D., Bruzzone, L., Zhang, Y., Guan, H., Ding, H., Huang, X.: SemiCDNet: a semisupervised convolutional neural network for change detection in high resolution remote-sensing images. IEEE Trans. Geosci. Remote Sens. 59(7), 5891–5906 (2020)

    Article  Google Scholar 

  20. Chen, H., Qi, Z., Shi, Z.: Efficient transformer based method for remote sensing image change detection. arXiv e-prints pp. arXiv-2103 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, C., Du, C., Wu, J., Chen, H. (2022). SUDANet: A Siamese UNet with Dense Attention Mechanism for Remote Sensing Image Change Detection. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13537. Springer, Cham. https://doi.org/10.1007/978-3-031-18916-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18916-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18915-9

  • Online ISBN: 978-3-031-18916-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics