Skip to main content

Deception Detection with Feature-Augmentation by Soft Domain Transfer

  • Conference paper
  • First Online:
Social Informatics (SocInfo 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13618))

Included in the following conference series:

Abstract

In this era of information explosion, deceivers use different domains or mediums of information to exploit the users, such as News, Emails, and Tweets. Although numerous research has been done to detect deception in all these domains, information shortage in a new event necessitates these domains to associate with each other to battle deception. To form this association, we propose a feature augmentation method by harnessing the intermediate layer representation of neural models. Our approaches provide an improvement over the self-domain baseline models by up to 6.60%. We find Tweets to be the most helpful information provider for Fake News and Phishing Email detection, whereas News helps most in Tweet Rumour detection. Our analysis provides a useful insight for domain knowledge transfer which can help build a stronger deception detection system than the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aassal, A.E., Moraes, L., Baki, S., Das, A., Verma, R.: Anti-phishing pilot at ACM IWSPA 2018 evaluating performance with new metrics for unbalanced datasets, pp. 2–10. http://ceur-ws.org/Vol-2124/#anti-phishing-pilot

  2. Burgoon, J.K., Buller, D.B.: Interpersonal deception: III. Effects of deceit on perceived communication and nonverbal behavior dynamics. J. Nonverbal Behav. 18(2), 155–184 (1994). https://doi.org/10.1007/BF02170076

    Article  Google Scholar 

  3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. ArXiv abs/1810.04805 (2019)

    Google Scholar 

  4. Gautam, A., Jerripothula, K.R.: SGG: Spinbot, grammarly and glove based fake news detection. In: 2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM), pp. 174–182 (2020)

    Google Scholar 

  5. Hernández-Castañeda, Á., Calvo, H., Gelbukh, A., Flores, J.J.G.: Cross-domain deception detection using support vector networks. Soft. Comput. 21(3), 585–595 (2016). https://doi.org/10.1007/s00500-016-2409-2

    Article  Google Scholar 

  6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  7. Lang, K.: NewsWeeder: learning to filter netnews. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 331–339 (1995)

    Google Scholar 

  8. Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6, 167–195 (2015)

    Article  Google Scholar 

  9. Li, J., Ott, M., Cardie, C., Hovy, E.: Towards a general rule for identifying deceptive opinion spam. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Baltimore, Maryland, pp. 1566–1576. Association for Computational Linguistics, June 2014. https://doi.org/10.3115/v1/P14-1147. https://aclanthology.org/P14-1147

  10. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, Oregon, USA, pp. 142–150. Association for Computational Linguistics, June 2011. http://www.aclweb.org/anthology/P11-1015

  11. Pérez-Rosas, V., Kleinberg, B., Lefevre, A., Mihalcea, R.: Automatic detection of fake news. In: COLING (2018)

    Google Scholar 

  12. Shahriar, S., Mukherjee, A., Gnawali, O.: A domain-independent holistic approach to deception detection. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021), pp. 1308–1317 (2021)

    Google Scholar 

  13. Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data mining perspective. ACM SIGKDD Explor. Newsl. 19(1), 22–36 (2017)

    Article  Google Scholar 

  14. Sánchez-Junquera, J., Villaseñor-Pineda, L., Montes-y-Gómez, M., Rosso, P., Stamatatos, E.: Masking domain-specific information for cross-domain deception detection. Pattern Recogn. Lett. 135, 122–130 (2020). https://doi.org/10.1016/j.patrec.2020.04.020. https://www.sciencedirect.com/science/article/pii/S0167865520301422

  15. Upadhayay, B., Behzadan, V.: Sentimental LIAR: extended corpus and deep learning models for fake claim classification (2020)

    Google Scholar 

  16. Varshney, G., Misra, M., Atrey, P.K.: A survey and classification of web phishing detection schemes. Secur. Commun. Netw. 9(18), 6266–6284 (2016)

    Article  Google Scholar 

  17. Verma, R.M., Zeng, V., Faridi, H.: Data quality for security challenges: case studies of phishing, malware and intrusion detection datasets. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, pp. 2605–2607. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3319535.3363267

  18. Wang, W.Y.: “Liar, liar pants on fire”: a new benchmark dataset for fake news detection. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Vancouver, Canada, pp. 422–426. Association for Computational Linguistics, July 2017. https://doi.org/10.18653/v1/P17-2067. https://www.aclweb.org/anthology/P17-2067

  19. Zubiaga, A., Aker, A., Bontcheva, K., Liakata, M., Procter, R.: Detection and resolution of rumours in social media: a survey. ACM Comput. Surv. (CSUR) 51(2), 1–36 (2018)

    Article  Google Scholar 

  20. Zubiaga, A., Hoi, G.W.S., Liakata, M., Procter, R.: PHEME dataset of rumours and non-rumours, October 2016. https://doi.org/10.6084/m9.figshare.4010619.v1

Download references

Acknowledgements

The research was supported in part by grants NSF 1838147, ARO W911NF-20-1-0254. The views and conclusions contained in this document are those of the authors and not of the sponsors. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadat Shahriar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shahriar, S., Mukherjee, A., Gnawali, O. (2022). Deception Detection with Feature-Augmentation by Soft Domain Transfer. In: Hopfgartner, F., Jaidka, K., Mayr, P., Jose, J., Breitsohl, J. (eds) Social Informatics. SocInfo 2022. Lecture Notes in Computer Science, vol 13618. Springer, Cham. https://doi.org/10.1007/978-3-031-19097-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19097-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19096-4

  • Online ISBN: 978-3-031-19097-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics