Skip to main content

Multi-task Class Feature Space Fusion Domain Adaptation Network for Thyroid Ultrasound Images: Research on Generalization of Smart Healthcare Systems

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13471))

Abstract

In recent years, the poor generalizability of deep neural networks in multi-model medical images has attracted widespread attention. Domain adaptation is an approach to alleviate the above problem, which transfers the labeled source domain to the target domain. It can reduce the data labeling workload in the target domain and significantly improve the network’s generalizability. However, the differences between foreground areas and background areas of medical images are relatively minor, and it is difficult for existing methods to effectively extract domain invariant features. Further optimization of the feature distribution alignment for each category is also lacking. Therefore, a Multi-task Class feature space Fusion Domain Adaptation Network (MCFDAN) is proposed in this paper. Firstly, a reconstruction branch is added to the baseline network to mitigate feature offset of the target domain during encoding. Secondly, category constraints are added to the fusion of domain feature spaces, improving the generalizability of the source classifier to the target domain. Finally, the network incorporates a recurrent cross-attention module that highlights the feature expression of the lesion region. The evaluation results demonstrate that the proposed network achieves a significant performance improvement, which is important for the application of smart healthcare systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ganin, Y., Lempitsky, V.S.: Unsupervised domain adaptation by backpropagation. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37, pp. 1180–1189. JMLR.org, Lille, France (2015)

    Google Scholar 

  2. Ganin, Y., et al.: Domain-adversarial training of neural networks. In: Csurka, G. (ed.) Domain Adaptation in Computer Vision Applications. ACVPR, pp. 189–209. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58347-1_10

    Chapter  Google Scholar 

  3. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587. IEEE Computer Society, Columbus, OH, USA (2014)

    Google Scholar 

  4. Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE Computer Society, Las Vegas, NV, USA (2016)

    Google Scholar 

  6. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: International Conference on Computer Vision, pp. 603–612. IEEE, Seoul, Korea (South) (2019)

    Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1106–1114, Lake Tahoe, Nevada, United States (2012)

    Google Scholar 

  8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  9. Lin, T., Dollár, P., Girshick, R.B., He, K.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 936–944. IEEE Computer Society, Honolulu, HI, USA (2017)

    Google Scholar 

  10. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: Bach, F.R., Blei, D.M. (eds.) Proceedings of the 32nd International Conference on Machine Learning, vol. 37, pp. 97–105. JMLR.org, Lille, France (2015)

    Google Scholar 

  11. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: Advances in Neural Information Processing Systems, pp. 1647–1657. Montréal, Canada (2018)

    Google Scholar 

  12. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: Advances in Neural Information Processing Systems, pp. 136–144. Barcelona, Spain (2016)

    Google Scholar 

  13. Ma, J., Wu, F., Jiang, T., Zhu, J., Kong, D.: Cascade convolutional neural networks for automatic detection of thyroid nodules in ultrasound images. Med. Phys. 44(5), 1678–1691 (2017)

    Article  Google Scholar 

  14. Pacheco, C., Vidal, R.: An unsupervised domain adaptation approach to classification of stem cell-derived cardiomyocytes. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 806–814. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_89

    Chapter  Google Scholar 

  15. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  16. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99. Montreal, Quebec, Canada (2015)

    Google Scholar 

  17. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  18. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  19. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3723–3732. IEEE Computer Society, Salt Lake City, UT, USA (2018)

    Google Scholar 

  20. Song, R., et al.: Dual-branch network via pseudo-label training for thyroid nodule detection in ultrasound image. Appl. Intell. 52, 11738–11754 (2022)

    Article  Google Scholar 

  21. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  22. Sun, C., et al.: Evaluation of a deep learning-based computer-aided diagnosis system for distinguishing benign from malignant thyroid nodules in ultrasound images. Med. Phys. 47(9), 3952–3960 (2020)

    Article  Google Scholar 

  23. Xu, M., Zhang, J., Ni, B.: Adversarial domain adaptation with domain mixup. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 6502–6509. AAAI Press, New York, NY, USA (2020)

    Google Scholar 

  24. Ying, X., et al.: MSDAN: multi-scale self-attention unsupervised domain adaptation network for thyroid ultrasound images. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, pp. 871–876. IEEE, Virtual Event, South Korea (2020)

    Google Scholar 

  25. Yu, M., Han, M., Li, X., Jiang, H., Chen, H., Yu, R.: Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: thyroid ultrasound image case study. Comput. Biol. Med. 144, 1–17 (2022)

    Article  Google Scholar 

  26. Zhang, Y., Tang, H., Jia, K., Tan, M.: Domain-symmetric networks for adversarial domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5031–5040 (2019)

    Google Scholar 

  27. Zhao, J., et al.: Semantic consistency generative adversarial network for cross-modality domain adaptation in ultrasound thyroid nodule classification. Appl. Intell. 52(9), 10369–10383 (2022)

    Article  Google Scholar 

  28. Zhu, Y., Zhuang, F., Wang, J.: Multi-representation adaptation network for cross-domain image classification. Neural Netw. 119, 214–221 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Major Scientific and Technological Projects for A New Generation of Artificial Intelligence of Tianjin (Grant No. 18ZXZNSY00300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ying, X., Liu, Z., Gao, J., Zhang, R., Jiang, H., Wei, X. (2022). Multi-task Class Feature Space Fusion Domain Adaptation Network for Thyroid Ultrasound Images: Research on Generalization of Smart Healthcare Systems. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13471. Springer, Cham. https://doi.org/10.1007/978-3-031-19208-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19208-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19207-4

  • Online ISBN: 978-3-031-19208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics