Skip to main content

TimeBird: Context-Aware Graph Convolution Network for Traffic Incident Duration Prediction

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13471))

  • 1239 Accesses

Abstract

Estimating the traffic incident duration is of great importance to traffic control, traffic navigation, and transportation safety. However, the complex road network topology and dynamic traffic conditions make it challenging. In this paper, we propose a context-aware spatio-temporal graph convolution framework, named TimeBird, to estimate the duration time of traffic incidents. Specifically, we build the dynamic weighted adjacency matrix and traffic incident risk similarity matrix to learn the hidden spatial context correlations based on graph convolution network. Then we employ the historical traffic speed of road segments to learn the temporal dependency. Lastly, we design a context-aware attention mechanism to adaptively learn the heterogeneous traffic features for incident duration prediction. Extensive experiments on two large-scale real-world datasets from DiDi ride-hailing platform demonstrate the effectiveness of TimeBird.

This work was supported in part by the Fundamental Research Funds for the Central Universities under Grant No. 2021YJS185, in part by National Natural Science Foundation of China under Grant No. 62072029 and No. 61876017, in part by Beijing NSF under Grant No. L192004, and in part by DiDi Research Collaboration Plan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valenti, G., Lelli, M., Cucina, D.: A comparative study of models for the incident duration prediction. Eur. Transp. Res. Rev. 2(2), 103–111 (2010). https://doi.org/10.1007/s12544-010-0031-4

    Article  Google Scholar 

  2. Lin, Y., Li, R.: Real-time traffic accidents post-impact prediction: based on crowdsourcing data. Accid. Anal. Prev. 145, 105696 (2020)

    Google Scholar 

  3. Fu, K., Ji, T., Zhao, L., Lu, C.T.: Titan: a spatiotemporal feature learning framework for traffic incident duration prediction. In: Proceedings of the 27th ACM SIGSPATIAL, pp. 329–338 (2019)

    Google Scholar 

  4. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017)

  5. Fu, L., Li, J., Lv, Z., Li, Y., Lin, Q.: Estimation of short-term online taxi travel time based on neural network. In: Yu, D., Dressler, F., Yu, J. (eds.) WASA 2020. LNCS, vol. 12385, pp. 20–29. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59019-2_3

    Chapter  Google Scholar 

  6. Chai, D., Wang, L., Yang, Q.: Bike flow prediction with multi-graph convolutional networks. In: Proceedings of the 26th ACM SIGSPATIAL, pp. 397–400 (2018)

    Google Scholar 

  7. Wang, Q., Guo, B., Ouyang, Y., Shu, K., Yu, Z., Liu, H.: Spatial community-informed evolving graphs for demand prediction. In: Dong, Y., Ifrim, G., Mladenić, D., Saunders, C., Van Hoecke, S. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12461, pp. 440–456. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67670-4_27

    Chapter  Google Scholar 

  8. Gao, R., et al.: Aggressive driving saves more time? Multi-task learning for customized travel time estimation. In: IJCAI, pp. 1689–1696 (2019)

    Google Scholar 

  9. Moosavi, S., Samavatian, M.H., Parthasarathy, S., Teodorescu, R., Ramnath, R.: Accident risk prediction based on heterogeneous sparse data: new dataset and insights. In: Proceedings of the 27th ACM SIGSPATIAL, pp. 33–42 (2019)

    Google Scholar 

  10. Wang, B., Lin, Y., Guo, S., Wan, H.: GSNet: learning spatial-temporal correlations from geographical and semantic aspects for traffic accident risk forecasting. In: Proceedings of the AAAI, vol. 35, pp. 4402–4409 (2021)

    Google Scholar 

  11. Gao, R., Sun, F., Xing, W., Tao, D., Fang, J., Chai, H.: CTTE: customized travel time estimation via mobile crowdsensing. IEEE Trans. Intell. Transp. Syst. (2022)

    Google Scholar 

  12. Ma, X., Ding, C., Luan, S., Wang, Y., Wang, Y.: Prioritizing influential factors for freeway incident clearance time prediction using the gradient boosting decision trees method. IEEE Trans. Intell. Transp. Syst. 18(9), 2303–2310 (2017)

    Article  Google Scholar 

  13. Fu, K., Ji, T., Self, N., Chen, Z., Lu, C.T.: A hierarchical attention graph convolutional network for traffic incident impact forecasting. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 1619–1624. IEEE (2021)

    Google Scholar 

  14. Cong, H., Chen, C., Lin, P.S., Zhang, G., Milton, J., Zhi, Y.: Traffic incident duration estimation based on a dual-learning Bayesian network model. Transp. Res. Rec. 2672(45), 196–209 (2018)

    Article  Google Scholar 

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  16. Zhou, Z., Wang, Y., Xie, X., Chen, L., Liu, H.: RiskOracle: a minute-level citywide traffic accident forecasting framework. In: Proceedings of the AAAI, vol. 34, pp. 1258–1265 (2020)

    Google Scholar 

  17. Wu, C.H., Ho, J.M., Lee, D.T.: Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5(4), 276–281 (2004)

    Article  Google Scholar 

  18. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: Proceedings of the AAAI, vol. 33, pp. 922–929 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiwei Xing or Yaoxue Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, F. et al. (2022). TimeBird: Context-Aware Graph Convolution Network for Traffic Incident Duration Prediction. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13471. Springer, Cham. https://doi.org/10.1007/978-3-031-19208-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19208-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19207-4

  • Online ISBN: 978-3-031-19208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics