Skip to main content

Skin Lesion Segmentation via Intensive Atrous Spatial Transformer

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13471))

  • 1775 Accesses

Abstract

Skin melanoma is one of the most malignant tumors. In recent years, its incidence rate and mortality showed a high growth trend. Early detection and segmentation of skin lesions are vital in timely diagnosis and treatment. As the low contrast of lesion regions and high similarity in terms of appearance, skin lesion segmentation still remains a challenging work. Most of the segmentation methods use single-scale feature fusion, leading to the blur effect on the boundary. In this paper, we propose a new segmentation framework named Intensive Atrous Spatial Transformer Network (IASTrans-Net), which is based on a core module Intensive Atrous Spatial Pyramid Pooling (IASPP). The introduced IASPP can obtain valid features by using multi-scale feature fusion and channel attention. On the one hand, we employ atrous convolution with different dilation rates for multi-scale information extraction, ensuring that the effective information of each channel is obtained. On the other hand, channel attention is used to screen features, which can enable the network to effectively identify targets without increasing the training complexity. The experimental results show that the proposed IASTrans-Net has achieved good results in ISIC2017 and ISIC2018 datasets, surpassing most of the current mainstream methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Masni, M.A., Al-Antari, M.A., Choi, M.T., Han, S.M., Kim, T.S.: Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Comput. Meth. Prog. Biomed. 162, 221–231 (2018)

    Article  Google Scholar 

  2. Asadi-Aghbolaghi, M., Azad, R., Fathy, M., Escalera, S.: Multi-level context gating of embedded collective knowledge for medical image segmentation. CoRR (2020)

    Google Scholar 

  3. Cao, H., et al.: Swin-unet: Unet-like pure transformer for medical image segmentation. CoRR (2021)

    Google Scholar 

  4. Celebi, M.E., et al.: A methodological approach to the classification of dermoscopy images. Computer. Med. Imaging Graph. 31(6), 362–373 (2007)

    Article  Google Scholar 

  5. Chen, J., et al.: Transunet: Transformers make strong encoders for medical image segmentation. CoRR (2021)

    Google Scholar 

  6. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS. IEEE Trans. Pattern Anal. Mach. Intell. (2014)

    Google Scholar 

  7. Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: 2018 IEEE 15th International Symposium on Biomedical Imaging, pp. 168–172 (2018)

    Google Scholar 

  8. Day, G.R., Barbour, R.H.: Automated melanoma diagnosis: where are we at? Skin Res. Technol. 6(1), 1–5 (2000)

    Article  Google Scholar 

  9. Garnavi, R., Aldeen, M., Celebi, M.E., Bhuiyan, A., Dolianitis, C., Varigos, G.: Automatic segmentation of dermoscopy images using histogram thresholding on optimal color channels. Int. J. Med. Med. Sci. 1(2), 126–134 (2010)

    Google Scholar 

  10. Hardie, R.C., Ali, R., De Silva, M.S., Kebede, T.M.: Skin lesion segmentation and classification for ISIC 2018 using traditional classifiers with hand-crafted features. CoRR (2018)

    Google Scholar 

  11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  12. Jha, D., Riegler, M.A., Johansen, D., Halvorsen, P., Johansen, H.D.: Doubleu-net: a deep convolutional neural network for medical image segmentation. In: 2020 IEEE 33rd International Symposium on Computer-based Medical Systems (CBMS), pp. 558–564 (2020)

    Google Scholar 

  13. Kolesnikov, A., et al.: An image is worth 16 \(\times \) 16 words: Transformers for image recognition at scale (2021)

    Google Scholar 

  14. Liu, Z., Zerubia, J.: Skin image illumination modeling and chromophore identification for melanoma diagnosis. Phys. Med. Biol. 60(9), 3415 (2015)

    Article  Google Scholar 

  15. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical image Computing and Computer-Assisted Intervention, pp. 234–241 (2015)

    Google Scholar 

  17. Silveria, M., et al.: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J. Select. Top. Sign. Process. 3(1), 35–45 (2009)

    Article  Google Scholar 

  18. Singh, V.K., et al.: FCA-Net: adversarial learning for skin lesion segmentation based on multi-scale features and factorized channel attention. IEEE Access 7, 130552–130565 (2019)

    Article  Google Scholar 

  19. Singh, V.K., et al.: FCA-Net: adversarial learning for skin lesion segmentation based on multi-scale features and factorized channel attention. IEEE Access 7, 130552–130565 (2019)

    Article  Google Scholar 

  20. Vesal, S., Ravikumar, N., Maier, A.K.: SkinNet: a deep learning framework for skin lesion segmentation. CoRR (2018)

    Google Scholar 

  21. Wang, H., Cao, P., Wang, J., Zaïane, O.R.: Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer. CoRR (2021)

    Google Scholar 

  22. Wang, Z., Zou, N., Shen, D., Ji, S.: Non-local u-nets for biomedical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6315–6322 (2020)

    Google Scholar 

  23. Wong, A., Scharcanski, J., Fieguth, P.: Automatic skin lesion segmentation via iterative stochastic region merging. IEEE Trans. Inf. Technol. Biomed. 15(6), 929–936 (2011)

    Article  Google Scholar 

  24. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  25. Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1529–1537 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Special Project of Central Government Guiding Local Science and Technology Development (Grant No. 2021JH6/10500140), Program for the Liaoning Distinguished Professor, Program for Innovative Research Team in University of Liaoning Province (Grant No. LT2020015), the Support Plan for Key Field Innovation Team of Dalian (Grant No. 2021RT06), the Science and Technology Innovation Fund of Dalian (Grant No. 2020JJ25CY001), the Support Plan for Leading Innovation Team of Dalian University (Grant No. XLJ202010), Program for the Liaoning Province Doctoral Research Starting Fund (Grant No. 2022-BS-336).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanshu Fan or Dongsheng Zhou .

Editor information

Editors and Affiliations

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Fan, W., Zhou, D. (2022). Skin Lesion Segmentation via Intensive Atrous Spatial Transformer. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13471. Springer, Cham. https://doi.org/10.1007/978-3-031-19208-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19208-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19207-4

  • Online ISBN: 978-3-031-19208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics