Skip to main content

An Efficient Soft Analytical Side-Channel Attack on Ascon

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13471))

  • 2118 Accesses

Abstract

Lightweight cryptography is a subfield of cryptography, which is widely used in embedded systems, RFID, sensor networks, and so on. However, the leakage information during the operation of these IoT devices can be exploited by adversaries and subjected to side-channel attacks. Simultaneously, only a small number of previous works show these attacks. In this work, we perform the soft analytical side-channel attack (SASCA) on the encryption of Ascon. Since we construct a unique factor graph for Ascon, we can also use it to attack the masked implementations. The point of attack is the permutation function, one of Ascon’s most basic components. Our attack mainly consists of three steps. At the first, we run a side-channel template matching on the initialization phase. Then, we build a factor graph describing the intermediate computations in permutation, including the observed leakage for the intermediate variables. Third, we run a Belief Propagation (BP) algorithm that takes full advantage of these leakages. Through simulations, we show that the entire key can be successfully recovered by only using the leakage information of a few traces, and it also offers low time and memory complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adomnicai, A., Fournier, J.J., Masson, L.: Masking the lightweight authenticated ciphers acorn and ascon in software. Cryptology ePrint Archive (2018)

    Google Scholar 

  2. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Keccak specifications. Submission to NIST (round 3) (2011). https://keccak.team

  3. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1. 2. Submission to the CAESAR competition (2016)

    Google Scholar 

  4. Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gross, H., Wenger, E., Dobraunig, C., Ehrenhöfer, C.: Ascon hardware implementations and side-channel evaluation. Microprocess. Microsyst. 52, 470–479 (2017)

    Article  Google Scholar 

  6. Kannwischer, M.J., Pessl, P., Primas, R.: Single-trace attacks on keccak. IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 243–268 (2020)

    Google Scholar 

  7. MacKay, D.J., et al.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  8. Martin, S., Ferdinand, B.: Reference, optimized, masked C and ASM implementations of Ascon. https://github.com/ascon/ascon-c

  9. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: International Conference on Information and Communications Security, pp. 529–545. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/11935308_38

  10. Pearl, J.: Reverend Bayes on inference engines: a distributed hierarchical approach. In: Probabilistic and Causal Inference: The Works of Judea Pearl, pp. 129–138 (2022)

    Google Scholar 

  11. Pessl, P., Primas, R.: More practical single-trace attacks on the number theoretic transform. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp. 130–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_7

    Chapter  Google Scholar 

  12. Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5_29

    Chapter  Google Scholar 

  13. Samwel, N.: Side-channel analysis of keccak and ascon (2016)

    Google Scholar 

  14. Samwel, N., Daemen, J.: DPA on hardware implementations of ascon and keyak. In: Proceedings of the Computing Frontiers Conference, pp. 415–424 (2017)

    Google Scholar 

  15. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 282–296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_15

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R &D Program of China (Grant No. 2020AAA0107703), the National Natural Science Foundation of China (Grant No. 62132008, 62072247, 62071222), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20220075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, S., Wu, W., Li, Y., Zhang, R., Liu, Z. (2022). An Efficient Soft Analytical Side-Channel Attack on Ascon. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13471. Springer, Cham. https://doi.org/10.1007/978-3-031-19208-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19208-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19207-4

  • Online ISBN: 978-3-031-19208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics