Skip to main content

Increasing the Accuracy of Secure Model for Medical Data Sharing in the Internet of Things

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13471))

  • 1742 Accesses

Abstract

The security of medical data sharing (MDS) plays an important role in the area of healthcare. Significantly, achieving its security faces more challenges due to the feature of multiparty holding, higher complexity, and serious data silos. Different from traditional secure schemes, which established model cannot deal with the above three problems due to the low accuracy of the MDS secure model, this paper designs a novel secure MDS model and two schemes to increase the accuracy of the model. In detail, to eliminate the issues of data silos and point failure, we combine the federated learning (FL) with blockchain technology into MDS secure model, and the data confidentiality of the exchanged data in the process of FL can be further ensured by differential privacy (DP). Then, to increase the accuracy of the secure MDS model, we design a validation incentive mechanism based on model quality (VIM) and an effective DP method with assigned weights (AWDP), in terms of participants’ enthusiasm and noise accumulation, respectively. Simulations show that the established model is effective and correct and the designed VIM and AWDP can achieve higher accuracy than current popular methods, resulting in 30\(\%\) increment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tang, W., Ren, J., Deng, K., Zhang, Y.: Secure data aggregation of lightweight e-healthcare IOT devices with fair incentives. IEEE Internet Things J. 6(5), 8714–8726 (2019)

    Article  Google Scholar 

  2. Liu, G., Wang, C., Ma, X., Yang, Y.: Keep your data locally: federated-learning-based data privacy preservation in edge computing. IEEE Netw. 35(2), 60–66 (2021)

    Article  Google Scholar 

  3. Qi, S., Lu, Y., Zheng, Y., Li, Y., Chen, X.: Cpds: enabling compressed and private data sharing for industrial internet of things over blockchain. IEEE Trans. Industr. Inf. 17(4), 2376–2387 (2021)

    Article  Google Scholar 

  4. Khan, L.U., Saad, W., Han, Z., Hossain, E., Hong, C.S.: Federated learning for internet of things: recent advances, taxonomy, and open challenges. IEEE Commun. Surv. Tutorials 23(3), 1759–1799 (2021)

    Article  Google Scholar 

  5. Zheng, X., Tian, L., Cai, Z.: A fair and rational data sharing strategy towards two-stage industrial internet of things. IEEE Trans. Industr. Inform. 1 (2022)

    Google Scholar 

  6. Cai, Z., Zheng, X., Wang, J., He, Z.: Private data trading towards range counting queries in internet of things. IEEE Trans. Mob. Comput. 1 (2022)

    Google Scholar 

  7. Yang, H., Zhao, J., Xiong, Z., Lam, K.-Y., Sun, S., Xiao, L.: Privacy-preserving federated learning for UAV-enabled networks: learning-based joint scheduling and resource management. IEEE J. Sel. Areas Commun. 39(10), 3144–3159 (2021)

    Article  Google Scholar 

  8. Zhou, X., Liang, W., She, J., Yan, Z., Wang, K.I.-K.: Two-layer federated learning with heterogeneous model aggregation for 6G supported internet of vehicles. IEEE Trans. Veh. Technol. 70(6), 5308–5317 (2021)

    Article  Google Scholar 

  9. Zheng, X., Cai, Z.: Privacy-preserved data sharing towards multiple parties in industrial IoTs. IEEE J. Sel. Areas Commun. 38(5), 968–979 (2020)

    Article  Google Scholar 

  10. Zhao, Y., et al.: Privacy-preserving blockchain-based federated learning for IoT devices. IEEE Internet Things J. 8(3), 1817–1829 (2021)

    Article  Google Scholar 

  11. Liu, Y., Peng, J., Kang, J., Iliyasu, A.M., Niyato, D., El-Latif, A.A.A.: A secure federated learning framework for 5G networks. IEEE Wirel. Commun. 27(4), 24–31 (2020)

    Article  Google Scholar 

  12. Jiang, C., Xu, C., Zhang, Y.: PPFL: privacy-preserving federated learning with membership proof. Inf. Sci. 576, 288–311 (2021)

    Article  Google Scholar 

  13. Cai, Z., He, Z.: Trading private range counting over big IoT data. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 144–153 (2019)

    Google Scholar 

  14. Gao, G., Xiao, M., Wu, J., Huang, L., Hu, C.: Truthful incentive mechanism for nondeterministic crowdsensing with vehicles. IEEE Trans. Mob. Comput. 17(12), 2982–2997 (2018)

    Article  Google Scholar 

  15. Zhao, B., Tang, S., Liu, X., Zhang, X.: Pace: privacy-preserving and quality-aware incentive mechanism for mobile crowdsensing. IEEE Trans. Mob. Comput. 20(5), 1924–1939 (2021)

    Article  Google Scholar 

  16. Chen, W., Chen, Y., Chen, X., Zheng, Z.: Toward secure data sharing for the IoV: a quality-driven incentive mechanism with on-chain and off-chain guarantees. IEEE Internet Things J. 7(3), 1625–1640 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61771289, 61832012), the Natural Science Foundation of Shandong Province with Grants ZR2021QF050, ZR2021MF075, Shandong Natural Science Foundation Major Basic Research (ZR2019ZD10), Shandong Key Research and Development Program (2019GGX1050), and Shandong Major Agricultural Application Technology Innovation Project (SD2019NJ007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangshun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J., Zhang, H., Li, G., Yu, K. (2022). Increasing the Accuracy of Secure Model for Medical Data Sharing in the Internet of Things. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13471. Springer, Cham. https://doi.org/10.1007/978-3-031-19208-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19208-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19207-4

  • Online ISBN: 978-3-031-19208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics