Skip to main content

A Secure Aggregation Scheme for Model Update in Federated Learning

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13471))

  • 1330 Accesses

Abstract

Federated learning is a novel machine learning framework that effectively satisfies the requirements of multiple organizations for data usage and model training while meeting privacy protection, data security, and government regulations. However, recent research has shown that attackers can infer users’ private information from their shared model parameters. To address the issue, in this paper, we propose the smart contract assisted secure aggregation scheme (SCSA). Firstly, we present a triple layers architecture based on blockchain for secure aggregation, which can adapt to application scenarios where a large amount of devices are involved in model training. Then, with the help of smart contracts, our scheme can efficiently distribute security masks to users in a decentralized form to ensure the security of parameters, and combine with secret sharing to design a double fault tolerance mechanism to effectively improve the robustness of the system. Finally, the theoretical analysis and simulation experiments prove that our scheme has high security and robustness while maintaining efficiency.

Supported by the National Natural Science Foundation of China under grant 62072065.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mcmahan, H.B., Moore, E., Ramage, D., Arcas, B.A.Y.: Communication-efficient learning of deep networks from decentralized data. CoRR, vol. abs/1602.05629 (2016). [Online]. Available: http://arxiv.org/abs/1602.05629

  2. Xiong, Z., Cai, Z., Takabi, D., Li, W.: Privacy threat and defense for federated learning with non-i.i.d. data in AIoT. IEEE Trans. Ind. Inform. 18(2), 1310–1321 (2022)

    Article  Google Scholar 

  3. Qin, Y., Kondo, M.: Mlmg: multi-local and multi-global model aggregation for federated learning. In: 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), pp. 565–571 (2021)

    Google Scholar 

  4. Peter Kairouz, H., McMahan, B., Avent, B., Bellet, A.: Advances and open problems in federated learning (2021)

    Google Scholar 

  5. Li, J., Cheng, S., Li, Y., Cai, Z.: Approximate holistic aggregation in wireless sensor networks. In: 2015 IEEE 35th International Conference on Distributed Computing Systems, pp. 740–741 (2015)

    Google Scholar 

  6. Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis of deep learning: passive and active white-box inference attacks against centralized and federated learning. In: IEEE Symposium on Security and Privacy (SP) (2019)

    Google Scholar 

  7. Pang, J., Huang, Y., Xie, Z., Han, Q., Cai, Z.: Realizing the heterogeneity: a self-organized federated learning framework for IoT. IEEE Internet Things J. 8(5), 3088–3098 (2021)

    Article  Google Scholar 

  8. Ganju, K., Wang, Q., Yang, w., Gunter, C.A., Borisov, N.: Property inference attacks on fully connected neural networks using permutation invariant representations. In: ACM SIGSAC Conference, pp. 619–633 (2018)

    Google Scholar 

  9. Cai, Z., Xiong, Z., Xu, H., Wang, P., Li, W., Pan, Y.: Generative adversarial networks: a survey toward private and secure applications. ACM Comput. Surv. 54(6), 1–38 (2021)

    Article  Google Scholar 

  10. Short, A.R., Leligou, H.C., Papoutsidakis, M., Theocharis, E.: Using blockchain technologies to improve security in federated learning systems. In: 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 1183–1188 (2020)

    Google Scholar 

  11. Deng, Y., Han, T., Zhang, N.: Flex: trading edge computing resources for federated learning via blockchain. In: IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 1–2 (2021)

    Google Scholar 

  12. Xu, Y., et al.: BESIFL: blockchain empowered secure and incentive federated learning paradigm in IoT. IEEE Internet Things J. (2021)

    Google Scholar 

  13. Feng, L., Yang, Z., Guo, S., Qiu, X., Li, W., Yu, P.: Two-layered blockchain architecture for federated learning over the mobile edge network. IEEE Network 36(1), 45–51 (2022)

    Article  Google Scholar 

  14. Yuwen, P., Chunqiang, H., Deng, S., Alrawais, A.: R\({^2}\)peds: a recoverable and revocable privacy-preserving edge data sharing scheme. IEEE Internet Things J. 7(9), 8077–8089 (2020)

    Article  Google Scholar 

  15. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., Seth, K.: Practical secure aggregation for federated learning on user-held data (2016)

    Google Scholar 

  16. Beguier C., Tramel, E.W.: SAFER: sparse secure aggregation for federated learning. CoRR abs/2007.14861 (2020)

    Google Scholar 

  17. Dowlin, N., Gilad-bachrach, R., Laine, K., Lauter, K., Wernsing, J.: CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. IEEE (2016)

    Google Scholar 

  18. Nath S., Rastogi, V.: Private aggregation of distributed time-series data. US (2012)

    Google Scholar 

  19. Meng, T., Zhao, Y., Wolter, K., Cheng-Zhong, X.: On consortium blockchain consistency: a queueing network model approach. IEEE Trans. Parallel Dis. Syst. 32(6), 1369–1382 (2021)

    Article  Google Scholar 

  20. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunqiang Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, B., Hu, C., Liu, Z. (2022). A Secure Aggregation Scheme for Model Update in Federated Learning. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13471. Springer, Cham. https://doi.org/10.1007/978-3-031-19208-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19208-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19207-4

  • Online ISBN: 978-3-031-19208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics