Skip to main content

A Novel Self-supervised Few-shot Network Intrusion Detection Method

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13471))

  • 1352 Accesses

Abstract

Supervised models for network intrusion detection usually rely on many training samples, but the annotation costs are very high. Unlabeled network traffic data is relatively easy to obtain. However, there are only a few methods to utilize these unlabeled data adequately. We propose a novel self-supervised few-shot network intrusion detection method to address the above problems. The method consists of two models: a) network traffic representation model and b) network intrusion detection model. First, the network traffic representation model uses unlabeled network traffic data through self-supervised learning to obtain network traffic representations, which will benefit the training of network intrusion detection model. Then, the shared layers of the network traffic representation model are transferred to the network intrusion detection model and frozen. Finally, a few training samples are used to fine-tune the network intrusion detection model, and we can obtain a model with good generalization. However, self-supervised learning of the network traffic representation model requires a method for generating labels from network traffic. Therefore, we propose a novel method to generate labels based on discrete features of network traffic. Experiments show that our proposed method has better performance than other network intrusion detection models with few-shot. On NSL-KDD, only \( 200 \) labeled samples are needed to achieve \( 95.2 \% \) accuracy.

Supported by organization Zhixin Shi Youth Promotion Association.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, L., Huang, W., Lv, Q., Wang, Y., Chen, H.Y.: AOPL: attention enhanced oversampling and parallel deep learning model for attack detection in imbalanced network traffic. In: Liu, Z., Wu, F., Das, S.K. (eds.) WASA 2021. LNCS, vol. 12938, pp. 84–95. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86130-8_7

    Chapter  Google Scholar 

  2. Xu, C., Shen, J., Du, X.: A method of few-shot network intrusion detection based on meta-learning framework. Trans. Inf. Forensics Secur. 15, 3540–3552 (2020)

    Article  Google Scholar 

  3. Yang, T.-H., Lin, Y.-T., Wu, C.-L., Wang, C.-Y.: Voting-based ensemble model for network anomaly detection. In: ICASSP, pp. 8543–8547. IEEE (2021)

    Google Scholar 

  4. Xu, H., Przystupa, K., Fang, C., Marciniak, A., Kochan, O., Beshley, M.: A combination strategy of feature selection based on an integrated optimization algorithm and weighted k-nearest neighbor to improve the performance of network intrusion detection. Electronics 9(8), 1206 (2020)

    Article  Google Scholar 

  5. Gu, J., Lu, S.: An effective intrusion detection approach using SVM with naïve bayes feature embedding. Comput. Secur. 103, 102158 (2021)

    Article  Google Scholar 

  6. Devan, P., Khare, N.: An efficient XGBoost-DNN-based classification model for network intrusion detection system. Neural Comput. Appl. 32(16), 12499–12514 (2020). https://doi.org/10.1007/s00521-020-04708-x

    Article  Google Scholar 

  7. Zhang, H., Li, Y., Lv, Z., Sangaiah, A.K., Huang, T.: A real-time and ubiquitous network attack detection based on deep belief network and support vector machine. J. Autom. Sinica 7(3), 790–799 (2020)

    Article  Google Scholar 

  8. Sun, P., et al.: DL-IDS: extracting features using CNN-LSTM hybrid network for intrusion detection system. Secur. Commun. Netw. 2020, 1–11 (2020)

    Google Scholar 

  9. Andresini, G., Appice, A., Malerba, D.: Autoencoder-based deep metric learning for network intrusion detection. Inf. Sci. 569, 706–727 (2021)

    Article  MathSciNet  Google Scholar 

  10. Yang, Z., Leng, L., Zhang, B., Li, M., Chu, J.: Two novel style-transfer palmprint reconstruction attacks. Appl. Intell. 1–18 (2022)

    Google Scholar 

  11. Yang, Z., Xia, W., Lu, Z., Chen, Y., Li, X., Zhang, Y.: Hypernetwork-based personalized federated learning for multi-institutional CT imaging. arXiv preprint arXiv:2206.03709 (2022)

  12. Tang, R., et al.: Zerowall: detecting zero-day web attacks through encoder-decoder recurrent neural networks. In: INFOCOM, pp. 2479–2488. IEEE (2020)

    Google Scholar 

  13. Jia, S., Jiang, S., Lin, Z., Li, N., Xu, M., Yu, S.: A survey: Deep learning for hyperspectral image classification with few labeled samples. Neurocomputing 448, 179–204 (2021)

    Article  Google Scholar 

  14. Jing, L., Tian, Y.: Self-supervised visual feature learning with deep neural networks: a survey. Trans. Pattern Anal. Mach. Intell. 43(11), 4037–4058 (2020)

    Article  Google Scholar 

  15. Khan, R.U., Zhang, X., Alazab, M., Kumar, R.: An improved convolutional neural network model for intrusion detection in networks. In: CCC, pp. 74–77. IEEE (2019)

    Google Scholar 

  16. Zhang, J., Ling, Y., Fu, X., Yang, X., Xiong, G., Zhang, R.: Model of the intrusion detection system based on the integration of spatial-temporal features. Comput. Secur. 89, 101681 (2020)

    Article  Google Scholar 

  17. Yu, Y., Bian, N.: An intrusion detection method using few-shot learning. IEEE Access 8, 49730–49740 (2020)

    Article  Google Scholar 

  18. Sarkar, P., Etemad, A.: Self-supervised ECG representation learning for emotion recognition. Trans. Affect. Comput. (2020)

    Google Scholar 

  19. Liu, X., et al.: Self-supervised learning: generative or contrastive. Trans. Knowl. Data Eng. (2021)

    Google Scholar 

  20. Wang, Z., Li, Z., Wang, J., Li, D.: Network intrusion detection model based on improved BYOL self-supervised learning. Secur. Commun. Netw. 2021, 9486949 (2021)

    Google Scholar 

  21. Dwivedi, S., Vardhan, M., Tripathi, S.: Incorporating evolutionary computation for securing wireless network against cyberthreats. J. Supercomput. 76(11), 8691–8728 (2020). https://doi.org/10.1007/s11227-020-03161-w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Shi, Z., Wu, H., Xing, M. (2022). A Novel Self-supervised Few-shot Network Intrusion Detection Method. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13471. Springer, Cham. https://doi.org/10.1007/978-3-031-19208-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19208-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19207-4

  • Online ISBN: 978-3-031-19208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics