Skip to main content

Interference Mitigation via Collaborative Beamforming in UAV-Enabled Data Collections: A Multi-objective Optimization Method

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13471))

  • 1662 Accesses

Abstract

Unmanned aerial vehicles (UAVs) are adopted as promising platforms to provide aerial wireless communications and networks. However, due to the line-of-sight (LoS) dominant air-ground channels, UAVs cause stronger interference to the terrestrial network devices. In this work, we study a novel interference mitigation method via collaborative beamforming (CB) under a UAV-enabled data collection scenario. Specifically, we form a UAV-enabled virtual antenna array (UVAA) to transmit the collected data to the terrestrial base stations (BSs), and formulate an interference mitigation multi-objective optimization problem (IMMOP) to simultaneously enhance the data transmission efficiency, reduce the interference affection and increase the network lifetime. Due to the complexity and NP-hardness of IMMOP, a chaotic multi-objective multi-verse optimizer (CMOMVO) is proposed for solving the problem. Simulation results show that the CMOMVO can effectively solve the IMMOP and has better performance than some benchmark algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balanis, C.A.: Antenna Theory: Analysis and Design. John Wiley, Hoboken, NJ (2005)

    Google Scholar 

  2. Li, J., Kang, H., Sun, G., Liang, S., Liu, Y., Zhang, Y.: Physical layer secure communications based on collaborative beamforming for UAV networks: a multi-objective optimization approach. In: Proceedings of the IEEE INFOCOM, pp. 1–10 (2021)

    Google Scholar 

  3. Liang, S., et al.: A joint optimization approach for distributed collaborative beamforming in mobile wireless sensor networks. Ad Hoc Netw. 106, 102216 (2020)

    Article  Google Scholar 

  4. Lin, C., Wang, Z., Deng, J., Wang, L., Ren, J., Wu, G.: mTS: temporal-and spatial-collaborative charging for wireless rechargeable sensor networks with multiple vehicles. In: Proceedings of the IEEEINFOCOM, pp. 99–107. IEEE (2018)

    Google Scholar 

  5. Lin, C., Zhou, J., Guo, C., Song, H., Wu, G., Obaidat, M.S.: TSCA: a temporal-spatial real-time charging scheduling algorithm for on-demand architecture in wireless rechargeable sensor networks. IEEE Trans. Mob. Comput. 17(1), 211–224 (2018)

    Article  Google Scholar 

  6. Liu, T., Cui, M., Zhang, G., Wu, Q., Chu, X., Zhang, J.: 3D trajectory and transmit power optimization for UAV-enabled multi-link relaying systems. IEEE Trans. Green Commun. Netw. 5(1), 392–405 (2021)

    Article  Google Scholar 

  7. Mei, W., Wu, Q., Zhang, R.: Cellular-connected UAV: uplink association, power control and interference coordination. IEEE Trans. Wirel. Commun. 18(11), 5380–5393 (2019)

    Article  Google Scholar 

  8. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016)

    Article  MathSciNet  Google Scholar 

  9. Mirjalili, S., Jangir, P., Mirjalili, S.Z., Saremi, S., Trivedi, I.N.: Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl. Based Syst. 134, 50–71 (2017)

    Article  Google Scholar 

  10. Mirjalili, S., Jangir, P., Saremi, S.: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 46(1), 79–95 (2017)

    Article  Google Scholar 

  11. Mirjalili, S.Z., Mirjalili, S., Saremi, S., Faris, H., Aljarah, I.: Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 48(4), 805–820 (2017). https://doi.org/10.1007/s10489-017-1019-8

    Article  Google Scholar 

  12. Mozaffari, M., Saad, W., Bennis, M., Debbah, M.: Communications and control for wireless drone-based antenna array. IEEE Trans. Commun. 67(1), 820–834 (2019)

    Article  Google Scholar 

  13. Sayed, G.I., Tharwat, A., Hassanien, A.E.: Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection. Appl. Intell. 49(1), 188–205 (2019)

    Article  Google Scholar 

  14. Sun, G., Li, J., Liu, Y., Liang, S., Kang, H.: Time and energy minimization communications based on collaborative beamforming for UAV networks: a multi-objective optimization method. IEEE J. Sel. Areas Commun. 39(11), 3555–3572 (2021)

    Article  Google Scholar 

  15. Wang, Z., Duan, L.: Chase or wait: dynamic UAV deployment to learn and catch time-varying user activities. IEEE Trans. Mob. Comput. (2021). https://doi.org/10.1109/TMC.2021.3107027

  16. Wu, Q., et al.: A comprehensive overview on 5G-and-beyond networks with UAVs: from communications to sensing and intelligence. IEEE J. Sel. Areas Commun. 39(10), 2912–2945 (2021)

    Article  Google Scholar 

  17. Zeng, Y., Wu, Q., Zhang, R.: Accessing from the sky: a tutorial on UAV communications for 5G and beyond. Proc. IEEE 107(12), 2327–2375 (2019)

    Article  Google Scholar 

  18. Zeng, Y., Xu, J., Zhang, R.: Energy minimization for wireless communication with rotary-wing UAV. IEEE Trans. Wirel. Commun. 18(4), 2329–2345 (2019)

    Article  Google Scholar 

  19. Zhang, X., Duan, L.: Energy-saving deployment algorithms of UAV swarm for sustainable wireless coverage. IEEE Trans. Veh. Technol. 69(9), 10320–10335 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

This study is supported in part by the National Natural Science Foundation of China (62172186, 62002133, 61872158), in part by the National Key Research and Development Program of China (2018YFC0831706), in part by the Science and Technology Development Plan Project of Jilin Province (20210101183JC, 20210201072GX, 20200201166JC), in part by the Young Science and Technology Talent Lift Project of Jilin Province (QT202013), and in part by the Central Government funds for guiding local scientific and Technological Development (2021Szvup047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geng Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Wei, D., Sun, G., Wang, J., Li, J., Kang, H. (2022). Interference Mitigation via Collaborative Beamforming in UAV-Enabled Data Collections: A Multi-objective Optimization Method. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13471. Springer, Cham. https://doi.org/10.1007/978-3-031-19208-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19208-1_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19207-4

  • Online ISBN: 978-3-031-19208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics