Skip to main content

A Smart Contract-Based Intelligent Traffic Adaptive Signal Control Scheme

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13471))

  • 1697 Accesses

Abstract

Intelligent traffic is one of the most important applications for improving urban traffic pressure. However, intersections are an important element of urban road network, which makes the complex traffic data face the challenges of security and efficiency in the process of transmission. In this paper, we propose a smart contract-based intelligent traffic adaptive signal control scheme to optimize the traffic efficiency problem at intersections. In the scheme, we use consortium blockchain and smart contracts to ensure secure transmission of traffic data and trusted access permission verification for intelligent traffic devices. Then, we introduce edge computing into the intelligent traffic, which can process massive traffic data in real time. In addition, we propose an improved Webster algorithm, aiming at optimizing the dynamic allocation of signal times, so as to reduce the congestion at intersections. The security analysis and evaluation experiments demonstrate that the scheme is feasible and valid, and it can facilitate the adaptive control of traffic signal lights.

This work was supported in part by the NSF of China under Grants 61832012 and 61771289, and the Pilot Project for Integrated Innovation of Science, The Piloting Fundamental Research Program for the Integration of Scientific Research, Education and Industry of Qilu University of Technology (Shandong Academy of Sciences) under Grant 2022XD001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Poch, M., Mannering, F.: Negative binomial analysis of intersection-accident frequencies. J. Transp. Eng. 122(2), 105–113 (1996)

    Article  Google Scholar 

  2. Wang, T., Cao, J., Hussain, A.: Adaptive traffic signal control for large-scale scenario with cooperative group-based multi-agent reinforcement learning. Transp. Res. Part C: Emerg. Technol. 125, 103046 (2021)

    Article  Google Scholar 

  3. Cui, L., Yang, S., Chen, Z., Pan, Y., Ming, Z., Xu, M.: A decentralized and trusted edge computing platform for internet of things. IEEE Internet Things J. 7(5), 3910–3922 (2019)

    Article  Google Scholar 

  4. Firdaus, M., Rhee, K.H.: On blockchain-enhanced secure data storage and sharing in vehicular edge computing networks. Appl. Sci. 11(1), 414 (2021)

    Article  Google Scholar 

  5. Manivannan, D., Moni, S.S., Zeadally, S.: Secure authentication and privacy-preserving techniques in vehicular ad-hoc networks (vanets). Veh. Commun. 25, 100247 (2020)

    Google Scholar 

  6. Maesa, D.D.F., Mori, P.: Blockchain 3.0 applications survey. J. Parallel Distrib. Comput. 138, 99–114 (2020)

    Google Scholar 

  7. Khan, L.U., Yaqoob, I., Tran, N.H., Kazmi, S.A., Dang, T.N., Hong, C.S.: Edge-computing-enabled smart cities: a comprehensive survey. IEEE Internet Things J. 7(10), 10200–10232 (2020)

    Article  Google Scholar 

  8. Cui, J., Wei, L., Zhong, H., Zhang, J., Xu, Y., Liu, L.: Edge computing in vanets-an efficient and privacy-preserving cooperative downloading scheme. IEEE J. Sel. Areas Commun. 38(6), 1191–1204 (2020)

    Article  Google Scholar 

  9. Zhang, J., Zhong, H., Cui, J., Tian, M., Xu, Y., Liu, L.: Edge computing-based privacy-preserving authentication framework and protocol for 5g-enabled vehicular networks. IEEE Trans. Veh. Technol. 69(7), 7940–7954 (2020)

    Article  Google Scholar 

  10. Wang, S., Ye, D., Huang, X., Yu, R., Wang, Y., Zhang, Y.: Consortium blockchain for secure resource sharing in vehicular edge computing: a contract-based approach. IEEE Trans. Netw. Sci. Eng. 8(2), 1189–1201 (2020)

    Article  MathSciNet  Google Scholar 

  11. Hewa, T., Ylianttila, M., Liyanage, M.: Survey on blockchain based smart contracts: applications, opportunities and challenges. J. Netw. Comput. Appl. 177, 102857 (2021)

    Article  Google Scholar 

  12. Rivera, A.V., Refaey, A., Hossain, E.: A blockchain framework for secure task sharing in multi-access edge computing. IEEE Netw. 35(3), 176–183 (2020)

    Article  Google Scholar 

  13. Webster, F.V.: Traffic signal settings. Tech. rep. (1958)

    Google Scholar 

  14. Adeke, P.T., Atoo, A.A., Zava, A.E.: Traffic signal design and performance assessment of 4-leg intersections using webster’s model: a case of ‘srs’and ‘b-division’intersections in makurdi town. Int. Res. J. Eng. Technol. 5(5), 1253–1260 (2018)

    Google Scholar 

  15. Tajalli, M., Mehrabipour, M., Hajbabaie, A.: Network-level coordinated speed optimization and traffic light control for connected and automated vehicles. IEEE Trans. Intell. Transp. Syst. 22(11), 6748–6759 (2020)

    Article  Google Scholar 

  16. Liang, X., Du, X., Wang, G., Han, Z.: A deep reinforcement learning network for traffic light cycle control. IEEE Trans. Veh. Technol. 68(2), 1243–1253 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biwei Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, W., Tian, X., Cheng, X., Yuan, Y., Yan, B., Yu, J. (2022). A Smart Contract-Based Intelligent Traffic Adaptive Signal Control Scheme. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13471. Springer, Cham. https://doi.org/10.1007/978-3-031-19208-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19208-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19207-4

  • Online ISBN: 978-3-031-19208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics