Skip to main content

Incorporating Self Attention Mechanism into Semantic Segmentation for Lane Detection

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13472))

  • 1186 Accesses

Abstract

Lane detection is a challenging task in the field of vision detection. The annotation information of lane is very sparse, and it is faced with the interference of occlusion, illumination and other factors, which seriously affects the capture of lane features by neural network. In this paper, we propose the Self-Attention Lane Segmentation Network (SALSN) which allows attention-driven, long-range dependency modeling for lane detection task. Although traditional convolutional neural networks have demonstrated their powerful performance, their ability to capture global relationships in images has not been fully explored. We introduce a self-attentive module to model the long-range dependencies between lane features. Lanes have strong shape constraints but weak coherence. In SALSN, we utilize a dense feature fusion framework to better capture lane context information and use all element information to generate lane segmentation images. Experimental results show that SALSN is not only effective in learning the remote dependencies of lane features, but also significantly improves the lane detection performance. We have validated our approach on two large-scale lane detection datasets, and our method can achieve more competitive results.

This research was supported in part by National Key Research and Development Plan Key Special Projects under Grant No. 2018YFB2100303, Shandong Province colleges and universities youth innovation technology plan innovation team project under Grant No. 2020KJN011, Shandong Provincial Natural Science Foundation under Grant No. ZR2020MF060, Program for Innovative Postdoctoral Talents in Shandong Province under Grant No. 40618030001, National Natural Science Foundation of China under Grant No. 61802216, and Postdoctoral Science Foundation of China under Grant No. 2018M642613.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peng, T., Su, L., Zhang, R., Guan, Z., Zhao, H., Qiu, Z.: A new safe lane-change trajectory model and collision avoidance control method for automatic driving vehicles. Expert Syst. Appl. 141, 112953 (2020)

    Article  Google Scholar 

  2. Tang, J., Li, S., Liu, P.: A review of lane detection methods based on deep learning. Pattern Recogn. 111, 107623 (2021)

    Article  Google Scholar 

  3. Wu, P.-C., Chang, C.-Y., Lin, C.H.: Lane-mark extraction for automobiles under complex conditions. Pattern Recogn. 47(8), 2756–2767 (2014)

    Article  Google Scholar 

  4. Fan, R., Wang, H., Cai, P., Liu, M.: SNE-RoadSeg: incorporating surface normal information into semantic segmentation for accurate freespace detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 340–356. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_21

    Chapter  Google Scholar 

  5. Ko, Y., Lee, Y., Azam, S., Munir, F., Jeon, M., Pedrycz, W.: Key points estimation and point instance segmentation approach for lane detection. IEEE Trans. Intell. Transp. Syst. 23(7), 8949–8958 (2022)

    Article  Google Scholar 

  6. Lv, Z., Li, J., Dong, C., Li, H., Xu, Z.: Deep learning in the COVID-19 epidemic: a deep model for urban traffic revitalization index. Data Knowl. Eng. 135, 101912 (2021)

    Article  Google Scholar 

  7. Lv, Z., Li, J., Dong, C., Xu, Z.: DeepSTF: a deep spatial-temporal forecast model of taxi flow. Comput. J. (2021)

    Google Scholar 

  8. Zheng, T., et al.: RESA: recurrent feature-shift aggregator for lane detection. In: AAAI Conference on Artificial Intelligence, pp. 3547–3554 (2021)

    Google Scholar 

  9. Liu, L., Chen, X., Zhu, S., Tan, P.: CondLaneNet: a top-to-down lane detection framework based on conditional convolution. In: IEEE/CVF International Conference on Computer Vision, pp. 3773–3782 (2021)

    Google Scholar 

  10. Tabelini, L., Berriel, R., Paixao, T.M., Badue, C., De Souza, A.F., Oliveira-Santos, T.: Keep your eyes on the lane: real-time attention-guided lane detection. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 294–302 (2021)

    Google Scholar 

  11. Lee, M., Lee, J., Lee, D., Kim, W., Hwang, S., Lee, S.: Robust lane detection via expanded self attention. In: Winter Conference on Applications of Computer Vision, pp. 533–542 (2022)

    Google Scholar 

  12. Zhang, J., Lu, C., Li, X., Kim, H.-J., Wang, J.: A full convolutional network based on DenseNet for remote sensing scene classification. Math. Biosci. Eng. 16(5), 3345–3367 (2019)

    Article  Google Scholar 

  13. Wu, Z., Shen, C., Van Den Hengel, A.: Wider or deeper: revisiting the resnet model for visual recognition. Pattern Recogn. 90, 119–133 (2019)

    Article  Google Scholar 

  14. TuSimple: Tusimple benchmark. https://github.com/TuSimple/tusimple-benchmark. Accessed Nov 2019

  15. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  16. Hou, Y., Ma, Z., Liu, C., Loy, C.C.: Learning lightweight lane detection CNNs by self attention distillation. In: IEEE International Conference on Computer Vision, pp. 1013–1021 (2019)

    Google Scholar 

  17. Su, J., Chen, C., Zhang, K., Luo, J., Wei, X., Wei, X.: Structure guided lane detection. arXiv preprint arXiv:2105.05403 (2021)

  18. DataLake. https://aistudio.baidu.com/aistudio/datasetdetail/54289?_=1621952478922

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, G., Li, J., Wang, Y., Meng, X. (2022). Incorporating Self Attention Mechanism into Semantic Segmentation for Lane Detection. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13472. Springer, Cham. https://doi.org/10.1007/978-3-031-19214-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19214-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19213-5

  • Online ISBN: 978-3-031-19214-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics