Abstract
While satellite-based positioning systems are mainly used in outdoor environments, various other positioning techniques exist for different domains and use cases, including indoor or underground settings. The representation of spatial data via semantic linked data is well addressed by existing spatial ontologies. However, there is a primary focus on location data with its specific geographical context, but a lack of solutions for describing the different types of data generated by a positioning system and the used sampling techniques to obtain the data. In this paper we introduce a new generic Positioning System Ontology (POSO) that is built on top of the Semantic Sensor Network (SSN) and Sensor, Observation, Sample, and Actuator (SOSA) ontologies. With POSO, we provide missing concepts needed for describing a positioning system and its output with known positioning algorithms and techniques in mind. Thereby, we enable the improvement of hybrid positioning systems making use of multiple platforms and sensors that are described via the presented POSO ontology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
ssns: is the prefix for SSN-Systems [5].
- 4.
- 5.
References
Abdelmoty, A.I., Smart, P., Jones, C.B.: Building place ontologies for the semantic web: issues and approaches. In: Proceedings GIR 2007, 4th ACM Workshop on Geographical Information Retrieval, pp. 7–12 (2007)
Battle, R., Kolas, D.: GeoSPARQL: enabling a geospatial semantic web. Semant. Web J. 3(4) (2011)
Brickley, D.: W3C semantic web interest group: basic geo (WGS84 lat/long) vocabulary. W3C Working Group Note (2004)
Carbonera, J.L., et al.: Defining positioning in a core ontology for robotics. In: Proceedings of IROS 2013, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1867–1872 (2013). https://doi.org/10.1109/IROS.2013.6696603
Compton, M., et al.: The SSN ontology of the W3C semantic sensor network incubator group. J. Web Semant. 17 (2012). https://doi.org/10.1016/j.websem.2012.05.003
Diebel, J.: Representing attitude: euler angles, unit quaternions, and rotation vectors. Matrix 58(15–16), 1–35 (2006)
Djuknic, G.M., Richton, R.E.: Geolocation and assisted GPS. Computer 34(2) (2001). https://doi.org/10.1109/2.901174
Elmenreich, W.: An introduction to sensor fusion. Technical Report 47/2001, Vienna University of Technology (2002)
Elsaleh, T., Bermudez-Edo, M., Enshaeifar, S., Acton, S.T., Rezvani, R., Barnaghi, P.: IoT-stream: a lightweight ontology for internet of things data streams. In: Proceedings of GIoTS 2019, Global IoT Summit, pp. 1–6 (2019). https://doi.org/10.1109/GIOTS.2019.8766367
Flury, T., Privat, G., Ramparany, F.: OWL-based Location Ontology for context-aware services. In: Proceedings of AIMS 2004, International Workshop on Artificial Intelligence in Mobile Systems, pp. 52–57 (2004)
Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., Wasielewska, K.: Semantic interoperability in the internet of things: an overview from the INTER-IoT perspective. J. Netw. Comput. Appl. 81, 111–124 (2017). https://doi.org/10.1016/j.jnca.2016.08.007
Georgiou, K., Constambeys, T., Laoudias, C., Petrou, L., Chatzimilioudis, G., Zeinalipour-Yazti, D.: Anyplace: a crowdsourced indoor information service. In: Proceedings of MDM 2015, International Conference on Mobile Data Management, pp. 291–294 (2015). https://doi.org/10.1109/MDM.2015.80
Gu, Y., Lo, A., Niemegeers, I.: A survey of indoor positioning systems for wireless personal networks. IEEE Commun. Surv. Tutor. 11(1) (2009). https://doi.org/10.1109/SURV.2009.090103
Hansen, R., Wind, R., Jensen, C.S., Thomsen, B.: Seamless indoor/outdoor positioning handover for location-based services in streamspin. In: Proceedings of MDM 2009, International Conference on Mobile Data Management, pp. 267–272 (2009). https://doi.org/10.1109/MDM.2009.39
Harle, R.: A survey of indoor inertial positioning systems for pedestrians. IEEE Commun. Surv. Tutor. 15(3), 1281–1293 (2013). https://doi.org/10.1109/SURV.2012.121912.00075
Hodgson, R., Keller, P.J., Hodges, J., Spivak, J.: QUDT-Quantities, Units, Dimensions and Data Types Ontologies (2014). http://qudt.org
Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E.: GNSS-global navigation satellite systems: GPS, GLONASS, galileo, and more. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-211-73017-1
Hu, Y., et al.: A geo-ontology design pattern for semantic trajectories. In: Proceedings of COSIT 2013, International Conference on Spatial Information Theory, pp. 438–456 (2013). https://doi.org/10.1007/978-3-319-01790-7_24
ISO Central Secretary: Information Technology - Database Languages - SQL Multimedia and Application Packages - Part 3: Spatial. Standard ISO/IEC 13249–3:2016, International Organization for Standardization, Geneva, Switzerland (2016). https://www.iso.org/standard/60343.html
ISO Central Secretary: Geographic information - Positioning Services. Standard ISO 19116:2019, International Organization for Standardization (2019). https://www.iso.org/standard/70882.html
ISO Central Secretary: Geographic Information - Referencing by Coordinates. Standard ISO 19111:2019, International Organization for Standardization (2019). https://www.iso.org/standard/74039.html
Janowicz, K., Compton, M.: The stimulus-sensor-observation ontology design pattern and its integration into the semantic sensor network ontology. In: Proceedings of SSN 2010, International Workshop on Semantic Sensor Networks (2010)
Janowicz, K., Haller, A., Cox, S.J., Le Phuoc, D., Lefrançois, M.: SOSA: a lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant. 56 (2019). https://doi.org/10.1016/j.websem.2018.06.003
Krumm, J., Harris, S., Meyers, B., Brumitt, B., Hale, M., Shafer, S.: Multi-camera multi-person tracking for easyliving. In: Proceedings of VS 2000, International Workshop on Visual Surveillance, pp. 3–10 (2000)
Lee, K., Lee, J., Kwan, M.P.: Location-based service using ontology-based semantic queries: a study with a focus on indoor activities in a university context. Comput. Environ. Urban Syst. 62 (2017). https://doi.org/10.1016/j.compenvurbsys.2016.10.009
Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 37(6), 1067–1080 (2007). https://doi.org/10.1109/TSMCC.2007.905750
Perera, M., Haller, A., Rodríguez Méndez, S.J., Adcock, M.: HDGI: a human device gesture interaction ontology for the internet of things. In: Proceedings of ISWC 2020, International Semantic Web Conference, pp. 111–126 (2020). https://doi.org/10.1007/978-3-030-62466-8_8
Perry, M., et al.: OGC GeoSPARQL: A Geographic Query Language for RDF Data: GeoSPARQL 1.1 Draft. Technical report (2021). https://opengeospatial.github.io/ogc-geosparql/geosparql11/spec.html
Popescu, A.: Geolocation API Specification 2nd Edition. W3C Recommendation, W3C (2016). https://www.w3.org/TR/2016/REC-geolocation-API-20161108/
Quigley, M., et al.: ROS: an open-source robot operating system. In: Proceedings of the International Workshop on Open Source Software (2009)
Sambra, A.V., et al.: Solid: A platform for decentralized social applications based on linked data. Technical report, MIT CSAIL & Qatar Computing Research Institute (2016)
Skog, I., Hendeby, G., Gustafsson, F.: Magnetic odometry: a model-based approach using a sensor array. In: Proceedings of FUSION 2018, International Conference on Information Fusion, pp. 794–798 (2018). https://doi.org/10.23919/ICIF.2018.8455430
Stadler, C., Lehmann, J., Höffner, K., Auer, S.: LinkedGeoData: a core for a web of spatial open data. Semant. Web 3(4), 333–354 (2012). https://doi.org/10.3233/SW-2011-0052
Sumikura, S., Shibuya, M., Sakurada, K.: OpenVSLAM: a versatile visual SLAM framework. In: Proceedings of MM 2019, International Conference on Multimedia. Nice, France (2019). https://doi.org/10.1145/3343031.3350539
Tandy, J., van den Brink, L., Barnaghi, P.: Spatial data on the web best practices. W3C Working Group Note (2017). https://www.w3.org/TR/sdw-bp/
Thrun, S.: Simultaneous localization and mapping. In: Robotics and Cognitive Approaches to Spatial Mapping, pp. 13–41. Springer (2007). https://doi.org/10.1007/978-3-540-75388-9_3
Torres-Sospedra, J., et al.: UJIIndoorLoc: a new multi-building and multi-floor database for wlan fingerprint-based indoor localization problems. In: Proceedings of IPIN 2014, International Conference on Indoor Positioning and Indoor Navigation, pp. 261–270 (2014). https://doi.org/10.1109/IPIN.2014.7275492
Torres-Sospedra, J., Rambla, D., Montoliu, R., Belmonte, O., Huerta, J.: UJIIndoorLoc-Mag: a new database for magnetic field-based localization problems. In: Proceedings of IPIN 2015, International Conference on Indoor Positioning and Indoor Navigation, pp. 1–10 (2015). https://doi.org/10.1109/IPIN.2015.7346763
Van de Wynckel, M., Signer, B.: OpenHPS: an open source hybrid positioning system. Technical Report WISE-2020-01, Vrije Universiteit Brussel (2020). https://doi.org/10.48550/ARXIV.2101.05198
Van de Wynckel, M., Signer, B.: POSO: A Generic Positioning System Ontology Repository (2022). https://github.com/OpenHPS/POSO/
Wang, S., Yue, J., Dong, Y., He, S., Wang, H., Ning, S.: A synthetic dataset for visual SLAM evaluation. Rob. Auton. Syst. 124, 103336 (2020). https://doi.org/10.1016/j.robot.2019.103336
Van de Wynckel, M., Signer, B.: Indoor positioning using the OpenHPS framework. In: Proceedings of IPIN 2021, International Conference on Indoor Positioning and Indoor Navigation, pp. 1–8 (2021). https://doi.org/10.1109/IPIN51156.2021.9662569
Yan, Z., Macedo, J., Parent, C., Spaccapietra, S.: Trajectory ontologies and queries. Trans. GIS 12, 75–91 (2008). https://doi.org/10.1111/j.1467-9671.2008.01137.x
Zampella, F., Ruiz, A.R.J., Granja, F.S.: Indoor positioning using efficient map matching, rss measurements, and an improved motion model. IEEE Trans. Veh. Technol. 64(4) (2015). https://doi.org/10.1109/TVT.2015.2391296
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Van de Wynckel, M., Signer, B. (2022). POSO: A Generic Positioning System Ontology. In: Sattler, U., et al. The Semantic Web – ISWC 2022. ISWC 2022. Lecture Notes in Computer Science, vol 13489. Springer, Cham. https://doi.org/10.1007/978-3-031-19433-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-19433-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19432-0
Online ISBN: 978-3-031-19433-7
eBook Packages: Computer ScienceComputer Science (R0)