Skip to main content

CESAMMO: Categorical Encoding by Statistical Applied Multivariable Modeling

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13612))

Included in the following conference series:

  • 985 Accesses

Abstract

Categorical attributes are present in datasets used in machine learning (ML) tasks. Since most ML algorithms only accept numeric inputs, categorical instances must be converted to numbers. There are different encoding techniques to accomplish this task. During this conversion, it is important to preserve the underlying pattern in the dataset. Otherwise, there may be a loss of information that can negatively affect the performance of supervised learning algorithms. In this paper, we present an encoding technique based on finding those numbers or codes that preserve the relationship between the categorical attribute and the other variables of the dataset. We solved six supervised classification problems using the proposed technique with five different ML algorithms. Additionally, we compare the performance of the proposed technique with other ten encoding techniques. We found that the proposed technique outperforms the most commonly used encoding techniques for certain trained ML algorithms. On average, CESAMMO remained within the top 5 techniques in terms of performance of the 12 encoders tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuhn, M., Johnson, K.: Feature Engineering and Selection: A Practical Approach for Predictive Models. CRC Press, Boca Raton (2019)

    Book  Google Scholar 

  2. Hancock, J.T., Khoshgoftaar, T.M.: Survey on categorical data for neural networks. J. Big Data 7(1), 1–41 (2020)

    Article  Google Scholar 

  3. Zheng, A., Casari, A.: Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists. O’Reilly Media Inc., Boston (2018)

    Google Scholar 

  4. Micci-Barreca, D.: A preprocessing scheme for high-cardinality categorical attributes in classification and prediction problems. ACM SIGKDD Explor. Newsl. 3(1), 27–32 (2001)

    Article  Google Scholar 

  5. Prokhorenkova, L., et al.: CatBoost: unbiased boosting with categorical features. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  6. Pargent, F., et al.: Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features. Comput. Stat., 1–22 (2022)

    Google Scholar 

  7. De La Bourdonnaye, F., Daniel, F.: Evaluating categorical encoding methods on a real credit card fraud detection database. arXiv preprint arXiv:2112.12024 (2021)

  8. Seca, D., Mendes-Moreira, J.: Benchmark of encoders of nominal features for regression. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Ramalho Correia, A.M. (eds.) WorldCIST 2021. AISC, vol. 1365, pp. 146–155. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72657-7_14

    Chapter  Google Scholar 

  9. Kuri-Morales, A.F.: Categorical encoding with neural networks and genetic algorithms. In: WSEAS Proceedings of the 6th International Conference on Applied Informatics and. Computing Theory, pp. 167–175 (2015)

    Google Scholar 

  10. Kuri-Morales, A.: Pattern discovery in mixed data bases. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A., Sarkar, S. (eds.) MCPR 2018. LNCS, vol. 10880, pp. 178–188. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92198-3_18

    Chapter  Google Scholar 

  11. Kuri-Morales, A., Cartas-Ayala, A.: Polynomial multivariate approximation with genetic algorithms. In: Sokolova, M., van Beek, P. (eds.) AI 2014. LNCS (LNAI), vol. 8436, pp. 307–312. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06483-3_30

    Chapter  Google Scholar 

  12. Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill Book Company, New York (1966)

    MATH  Google Scholar 

  13. Rana, R., Singhal, R., et al.: Chi-square test and its application in hypothesis testing. J. Pract. Cardiovasc. Sci. 1(1), 69 (2015)

    Article  Google Scholar 

  14. Cowles, M.: Statistics in Psychology: An Historical Perspective. Psychology Press, London (2005)

    Book  Google Scholar 

  15. Valdez-Valenzuela, E., Kuri-Morales, A., Gomez-Adorno, H.: Measuring the effect of categorical encoders in machine learning tasks using synthetic data. In: Batyrshin, I., Gelbukh, A., Sidorov, G. (eds.) MICAI 2021. LNCS (LNAI), vol. 13067, pp. 92–107. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89817-5_7

    Chapter  Google Scholar 

  16. McGinnis, W.D., et al.: Category encoders: a scikit-learn-contrib package of transformers for encoding categorical data. J. Open Source Softw. 3(21), 501 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Valdez-Valenzuela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valdez-Valenzuela, E., Kuri-Morales, A., Gomez-Adorno, H. (2022). CESAMMO: Categorical Encoding by Statistical Applied Multivariable Modeling. In: Pichardo Lagunas, O., Martínez-Miranda, J., Martínez Seis, B. (eds) Advances in Computational Intelligence. MICAI 2022. Lecture Notes in Computer Science(), vol 13612. Springer, Cham. https://doi.org/10.1007/978-3-031-19493-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19493-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19492-4

  • Online ISBN: 978-3-031-19493-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics