Skip to main content

White Blood Cell Detection and Classification in Blood Smear Images Using a One-Stage Object Detector and Similarity Learning

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2022)

Abstract

White blood cells are a fundamental part of the immune system which protect human body against infections and diseases. The complete blood count is a routine analysis that provides doctors information about the patients. Monitoring the immune system allows doctor to select preventive treatments against several diseases. The complete blood count relies in a rigorous observation of a blood sample through a microscope; the accuracy of the result depends on the expertise and time of the analyst. In this paper, a novel vision-based method using convolutional neural networks for white blood cell detection and classification is presented. The results show the proposed method is robust against the huge number of easy negatives in object detection, as well, the high inter-class similarity among images can be reduced for a better white blood cell classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mukund, N., Gite, S., Aluvalu, R.: A review of microscopic analysis of blood cells for disease detection with AI perspective. PeerJ Comput. Sci. 7, 1–27 (2021)

    Google Scholar 

  2. Mahmudul, M., Tariqul, M.: Machine learning approach of automatic identification and counting of blood cells. Healthc. Technol. Lett. 6(4), 103–108 (2019)

    Article  Google Scholar 

  3. Ramesh, N., Dangott, B., Salama, M.E., Tasdizen, T.: Isolation and two-step classification of normal white blood cells in peripheral blood smears. J. Pathol. Inf. 3(1), 99–110 (2012)

    Google Scholar 

  4. Barrero, C., Romero, L., Roa, E.: A novel approach for objective assessment of white blood cells using computational vision algorithms. Adv. Hematol. 2018(4716370) (2018)

    Google Scholar 

  5. Rosyadi, T., Arif, A., Nopriadi, Achmad, B.F.: Classification of leukocyte images using K-means clustering based on geometry features. In: 2016 6th International Annual Engineering Seminar (InAES) Proceedings. IEEE, Yogyakarta (2016)

    Google Scholar 

  6. Cruz, D., et al.: Determination of blood components (WBCs, RBCs, and Platelets) count in microscopic images using image processing and analysis. In: 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) Proceedings. IEEE, Philippines (2017)

    Google Scholar 

  7. Cheuque, C., Querales, M., Leon, R., Salas, R., Torres, R.: An efficient multi-level convolutional neural network approach for white blood cells classification. Diagnostics 12(248), 1–15 (2022)

    Google Scholar 

  8. Habibzadeh, M., Krzyżak, A., Fevens, T.: White blood cell differential counts using convolutional neural networks for low resolution images. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 263–274. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38610-7_25

    Chapter  Google Scholar 

  9. Tavakoli, S., Ghaffari, A., Kouzehkanan, Z.M., et al.: New segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images. Sci. Rep. 11(19428), 1–13 (2021)

    Google Scholar 

  10. Perez-Daniel, K., Fierro-Radilla, A., Peñaloza-Cobos, J.P.: Rotten fruit detection using a one stage object detector. In: Martínez-Villaseñor, L., Herrera-Alcántara, O., Ponce, H., Castro-Espinoza, F.A. (eds.) MICAI 2020. LNCS (LNAI), vol. 12469, pp. 325–336. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60887-3_29

    Chapter  Google Scholar 

  11. Fierro, A., Perez, K., Benitez, G., Najera, P., Fuentes, R.: Similarity learning for CNN-based ASL alphabet recognition. In: Frontiers in Artificial Intelligence and Applications. Proceedings of the 20th Interational Conference on New Trends in Intelligent Software Methodologies, Tools and Techniques (SoMeT 2021). IOS Press. (2021)

    Google Scholar 

  12. Blood Cell Kaggle Dataset. https://www.kaggle.com/datasets/paultimothymooney/blood-cells. Accessed 29 June 2022

  13. Huang, D., Hung, K., Chan, Y.: A computer assisted method for leukocyte nucleus segmentation and recognition in blood smear images. J. Syst. Softw. 85(9), 2104–2118 (2012)

    Article  Google Scholar 

  14. Gautam, A., Singh, P., Raman, B., Bhadauria, H.: Automatic classification of leukocytes using morphological features and Naïve Bayes classifier. In: 2016 IEEE Region 10 Conference (TENCON) Proceedings. IEEE, Singapore (2016)

    Google Scholar 

  15. Macawile, M., Quiñones, V., Ballado, A., Dela Cruz, J., Caya, V.: White blood cell classification and counting using convolutional neural network. In: 2018 3rd International Conference on Control and Robotics Engineering Proceedings, pp. 259–263. IEEE, Nagoya (2018)

    Google Scholar 

  16. Sahlol, A., Kollmannsberger, P., Ewees, A.: Blood cell leukemia with improved swarm optimization of deep features. Sci. Rep. 10(2536), 1–11 (2020)

    Google Scholar 

  17. Liang, G., Hong, H., Xie, W., Zheng, L.: Combining convolutional neural network with recursive neural network for blood cell image classification. IEEE Access 6, 36188–36197 (2018)

    Article  Google Scholar 

  18. Li, T., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318–327 (2018)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR2016) Proceedings. IEEE, Las Vegas (2016)

    Google Scholar 

  20. Lin, T., Dollár, P., Girshick, R., He, K., Hariharan, B., Belogie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR2017) Proceedings. IEEE, Honolulu (2017)

    Google Scholar 

  21. Common Object Context Weights Repository. https://github.com/fizyr/keras-retinanet/releases/download/0.5.1/resnet50_coco_best_v2.1.0.h5. Accessed 29 June 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atoany Nazareth Fierro-Radilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fierro-Radilla, A.N., Cacho, M.L.B., Perez-Daniel, K.R., Valle, A.A., Figueroa, C.A.L., Benitez-Garcia, G. (2022). White Blood Cell Detection and Classification in Blood Smear Images Using a One-Stage Object Detector and Similarity Learning. In: Pichardo Lagunas, O., Martínez-Miranda, J., Martínez Seis, B. (eds) Advances in Computational Intelligence. MICAI 2022. Lecture Notes in Computer Science(), vol 13612. Springer, Cham. https://doi.org/10.1007/978-3-031-19493-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19493-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19492-4

  • Online ISBN: 978-3-031-19493-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics