Abstract
White blood cells are a fundamental part of the immune system which protect human body against infections and diseases. The complete blood count is a routine analysis that provides doctors information about the patients. Monitoring the immune system allows doctor to select preventive treatments against several diseases. The complete blood count relies in a rigorous observation of a blood sample through a microscope; the accuracy of the result depends on the expertise and time of the analyst. In this paper, a novel vision-based method using convolutional neural networks for white blood cell detection and classification is presented. The results show the proposed method is robust against the huge number of easy negatives in object detection, as well, the high inter-class similarity among images can be reduced for a better white blood cell classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mukund, N., Gite, S., Aluvalu, R.: A review of microscopic analysis of blood cells for disease detection with AI perspective. PeerJ Comput. Sci. 7, 1–27 (2021)
Mahmudul, M., Tariqul, M.: Machine learning approach of automatic identification and counting of blood cells. Healthc. Technol. Lett. 6(4), 103–108 (2019)
Ramesh, N., Dangott, B., Salama, M.E., Tasdizen, T.: Isolation and two-step classification of normal white blood cells in peripheral blood smears. J. Pathol. Inf. 3(1), 99–110 (2012)
Barrero, C., Romero, L., Roa, E.: A novel approach for objective assessment of white blood cells using computational vision algorithms. Adv. Hematol. 2018(4716370) (2018)
Rosyadi, T., Arif, A., Nopriadi, Achmad, B.F.: Classification of leukocyte images using K-means clustering based on geometry features. In: 2016 6th International Annual Engineering Seminar (InAES) Proceedings. IEEE, Yogyakarta (2016)
Cruz, D., et al.: Determination of blood components (WBCs, RBCs, and Platelets) count in microscopic images using image processing and analysis. In: 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) Proceedings. IEEE, Philippines (2017)
Cheuque, C., Querales, M., Leon, R., Salas, R., Torres, R.: An efficient multi-level convolutional neural network approach for white blood cells classification. Diagnostics 12(248), 1–15 (2022)
Habibzadeh, M., Krzyżak, A., Fevens, T.: White blood cell differential counts using convolutional neural networks for low resolution images. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 263–274. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38610-7_25
Tavakoli, S., Ghaffari, A., Kouzehkanan, Z.M., et al.: New segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images. Sci. Rep. 11(19428), 1–13 (2021)
Perez-Daniel, K., Fierro-Radilla, A., Peñaloza-Cobos, J.P.: Rotten fruit detection using a one stage object detector. In: Martínez-Villaseñor, L., Herrera-Alcántara, O., Ponce, H., Castro-Espinoza, F.A. (eds.) MICAI 2020. LNCS (LNAI), vol. 12469, pp. 325–336. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60887-3_29
Fierro, A., Perez, K., Benitez, G., Najera, P., Fuentes, R.: Similarity learning for CNN-based ASL alphabet recognition. In: Frontiers in Artificial Intelligence and Applications. Proceedings of the 20th Interational Conference on New Trends in Intelligent Software Methodologies, Tools and Techniques (SoMeT 2021). IOS Press. (2021)
Blood Cell Kaggle Dataset. https://www.kaggle.com/datasets/paultimothymooney/blood-cells. Accessed 29 June 2022
Huang, D., Hung, K., Chan, Y.: A computer assisted method for leukocyte nucleus segmentation and recognition in blood smear images. J. Syst. Softw. 85(9), 2104–2118 (2012)
Gautam, A., Singh, P., Raman, B., Bhadauria, H.: Automatic classification of leukocytes using morphological features and Naïve Bayes classifier. In: 2016 IEEE Region 10 Conference (TENCON) Proceedings. IEEE, Singapore (2016)
Macawile, M., Quiñones, V., Ballado, A., Dela Cruz, J., Caya, V.: White blood cell classification and counting using convolutional neural network. In: 2018 3rd International Conference on Control and Robotics Engineering Proceedings, pp. 259–263. IEEE, Nagoya (2018)
Sahlol, A., Kollmannsberger, P., Ewees, A.: Blood cell leukemia with improved swarm optimization of deep features. Sci. Rep. 10(2536), 1–11 (2020)
Liang, G., Hong, H., Xie, W., Zheng, L.: Combining convolutional neural network with recursive neural network for blood cell image classification. IEEE Access 6, 36188–36197 (2018)
Li, T., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318–327 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR2016) Proceedings. IEEE, Las Vegas (2016)
Lin, T., Dollár, P., Girshick, R., He, K., Hariharan, B., Belogie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR2017) Proceedings. IEEE, Honolulu (2017)
Common Object Context Weights Repository. https://github.com/fizyr/keras-retinanet/releases/download/0.5.1/resnet50_coco_best_v2.1.0.h5. Accessed 29 June 2022
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fierro-Radilla, A.N., Cacho, M.L.B., Perez-Daniel, K.R., Valle, A.A., Figueroa, C.A.L., Benitez-Garcia, G. (2022). White Blood Cell Detection and Classification in Blood Smear Images Using a One-Stage Object Detector and Similarity Learning. In: Pichardo Lagunas, O., Martínez-Miranda, J., Martínez Seis, B. (eds) Advances in Computational Intelligence. MICAI 2022. Lecture Notes in Computer Science(), vol 13612. Springer, Cham. https://doi.org/10.1007/978-3-031-19493-1_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-19493-1_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19492-4
Online ISBN: 978-3-031-19493-1
eBook Packages: Computer ScienceComputer Science (R0)