Skip to main content

Embedded Implementation of the Hypersphere Neural Network for Energy Consumption Monitoring

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2022)

Abstract

The combination of the Internet of Things and Machine Learning has promoted the development of new technological approaches such as Edge Computing and Tiny Machine Learning. The contribution of this paper is the implementation of the Hypersphere Neural Network using the NodeMCU board and the Esp8266 microcontroller for energy consumption monitoring. The energy consumption monitoring consists of recognising the device operating with an IoT device. We use our IoT device for evaluating the performance of the embedded implementation of the Hypersphere Neural Network. The implementation of the Hypersphere Neural Network is carried out from the geometric algebra and conformal geometric algebra viewpoints. The idea behind the design and implementation of the Hypersphere Neural Network is to estimate hyperspheres which produce non-linear decision boundaries and separate the pattern classes. Our approach achieves 99.7\(\%\) and 99.4\(\%\) of classification success rate for training and validation stages respectively using a simple Hypersphere Neural Network topology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertha Mazon-Olivo, A.P.: Internet of things: state-of-the-art, computing paradigms and reference architectures. IEEE Lat. Am. Trans. 20, 49–63 (2022)

    Article  Google Scholar 

  2. López-Alfaro, G.A., et al.: Mobile robot for object detection using an iot system. In: 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), vol. 4, pp. 1–6 (2020)

    Google Scholar 

  3. López-Alfaro, G.A., et al.: Smart iot device for energy consumption monitoring in real time. In: 2021 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), vol. 5, pp. 1–6 (2021)

    Google Scholar 

  4. Mohamed, K.S.: The era of internet of things: towards a smart world. In: The Era of Internet of Things, pp. 1–19. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18133-8_1

    Chapter  Google Scholar 

  5. Pan, J., McElhannon, J.: Future edge cloud and edge computing for internet of things applications. IEEE Internet Things J. 5, 439–449 (2018)

    Article  Google Scholar 

  6. Cao, J., Zhang, Q., Shi, W.: Edge Computing: A Primer. Springer Briefs in Computer Science. Springer International Publishing (2018)

    Google Scholar 

  7. Zhang, C.: Intelligent internet of things service based on artificial intelligence technology. In: 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), pp. 731–734 (2021)

    Google Scholar 

  8. Su, W., Li, L., Liu, F., He, M., Liang, X.: Ai on the edge: a comprehensive review. Artificial Intelligence Review, 1–59 (2022)

    Google Scholar 

  9. Mendoza, C.M.H., Rubio, J.P.S., Carillo, A.O.M., Vidal, L.M.R., Guzmán, R.H.: Sistema iot para el cuidado de plantas ornamentales. Revista de Investigación en Tecnologías de la Información 10, 15–30 (2022)

    Article  Google Scholar 

  10. Melnyk, P., Felsberg, M., Wadenbäck, M.: Embed me if you can: a geometric perceptron. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1276–1284 (2021)

    Google Scholar 

  11. Dorst, L., Fontijne, D., Mann, S.: Geometric algebra for computer science: an object-oriented approach to geometry. Elsevier (2010)

    Google Scholar 

  12. Serrano-Rubio, J.P., Hernández-Aguirre, A., Herrera-Guzmán, R.: Hyperconic multilayer perceptron. Neural Process. Lett. 45, 29–58 (2017)

    Article  Google Scholar 

  13. Murrieta-Dueñas, R., Serrano-Rubio, J., López-Ramírez, V., Segovia-Dominguez, I., Cortez-González, J.: Prediction of microbial growth via the hyperconic neural network approach. Chemical Engineering Research and Design (2022)

    Google Scholar 

  14. Serrano-Rubio, J.P., Herrera-Guzmán, R., Hernández-Aguirre, A.: Hyperconic multilayer perceptron for function approximation. In: IECON 2015–41st Annual Conference of the IEEE Industrial Electronics Society, pp. 004702–004707 (2015)

    Google Scholar 

  15. Team, N.: Nodemcu-an opensource firmware based on esp8266 wifi-soc (2014). https://www.nodemcu.com

  16. Systems, E.: Esp8266 overview (2022). https://www.espressif.com/en/products

  17. Serrano-Rubio, J., García-Limón, J.A.: Edcube: Energy consumption dataset. https://sites.google.com/cimat.mx/jpsr/projects/machine-learning-for-edge-computing/edcube (2022) [Web (accessed August 26, 2022)]

  18. García-Limón, J.A., Serrano-Rubio, J.: Edcube: energy consumption dataset (2022). https://sites.google.com/view/limon-alfredo/projects/hnn. Accessed 26 Aug 2022

  19. Serrano-Rubio, J.P., Hernandez-Aguirre, A., Herrera-Guzman, R.: An evolutionary algorithm using spherical inversions. Soft. Comput. 22, 1993–2014 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Science and Technology Council of Mexico, CONACyT, for its financial support during this research through the project CB-2015/256126 and the SNI Research Assistant Grant 156381. The second author would like to thank the Tecnológico Nacional de México/ITS de Irapuato for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Serrano Rubio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García-Limón, J.A., Serrano Rubio, J.P., Herrera-Guzmán, R., Rodriguez-Vidal, L.M., Hernández-Mendoza, C.M. (2022). Embedded Implementation of the Hypersphere Neural Network for Energy Consumption Monitoring. In: Pichardo Lagunas, O., Martínez-Miranda, J., Martínez Seis, B. (eds) Advances in Computational Intelligence. MICAI 2022. Lecture Notes in Computer Science(), vol 13612. Springer, Cham. https://doi.org/10.1007/978-3-031-19493-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19493-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19492-4

  • Online ISBN: 978-3-031-19493-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics