Skip to main content

Sentiment Analysis in the Rest-Mex Challenge

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2022)

Abstract

In this paper, we describe our participation in the Rest-Mex 2022 forum for the Sentiment Analysis task. The objective of the task was to create a model capable of predicting the polarity of the sentiment expressed by a tourist’s opinion, as well as the type of attraction visited. For this task, we followed two different approaches: a lexicon-based approach and a Machine Learning approach. In the lexicon-based approach, we use a dictionary with words that have a numerical value that specifies the association with some emotions or attractions. We trained a logistic regression model for the Machine Learning approach to predict sentiment polarity and attractions. Our proposal obtained a combined score for both tasks of 0.85, which is only 0.03 away from the best reported result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://sepln2022.grupolys.org/eventos/.

  2. 2.

    Distributions of classes in the test set were not provided by the forum organizers.

  3. 3.

    We thank Gustavo-Alain Peduzzi-Acevedo, Edgar-Josue Varillas-Figueroa, Juan-Daniel Del-Valle-Pérez and Francisco-Javier Aragón-González for their help in implementing this algorithm.

  4. 4.

    Results were published in the official web page https://sites.google.com/cicese.edu.mx/rest-mex-2022/results?authuser=0.

  5. 5.

    https://sites.google.com/cicese.edu.mx/rest-mex-2022/data-and-evaluation?authuser=0.

References

  1. Cheung, C.M., Lee, M.K., Rabjohn, N.: The impact of electronic word-of-mouth: The adoption of online opinions in online customer communities. Internet Res. (2008)

    Google Scholar 

  2. Taboada, M., Brooke, J., Tofiloski, M., Voll, K.D., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37, 267–307 (2011)

    Article  Google Scholar 

  3. Mukhtar, N., Khan, M.A.: Effective lexicon-based approach for Urdu sentiment analysis. Artif. Intell. Rev. 53, 2521–2548 (2020)

    Article  Google Scholar 

  4. Mowlaei, M.E., Abadeh, M.S., Keshavarz, H.: Aspect-based sentiment analysis using adaptive aspect-based Lexicons. Expert Syst. Appl. 148, 113234 (2020)

    Article  Google Scholar 

  5. Hu, M., Liu, B.: Mining opinion features in customer reviews. In: AAAI 2004, pp. 755–760. AAAI Press (2004)

    Google Scholar 

  6. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs Up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10, Association for Computational Linguistics (2002)

    Google Scholar 

  7. Gambino, O.J., Calvo, H.: A comparison between two Spanish sentiment lexicons in the twitter sentiment analysis task. In: Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.) IBERAMIA 2016. LNCS (LNAI), vol. 10022, pp. 127–138. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47955-2_11

    Chapter  Google Scholar 

  8. Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: LREC, European Language Resources Association (2010)

    Google Scholar 

  9. Wilson, T., et al.: OpinionFinder: a system for subjectivity analysis. In: Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP-2005) Companion Volume (software demonstration) (2005)

    Google Scholar 

  10. Stone, P.J.: The General Inquirer: A Computer Approach to Content Analysis. The MIT Press, Cambridge (1966)

    Google Scholar 

  11. Tausczik, Y.R., Pennebaker, J.W.: The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29, 24–54 (2010)

    Article  Google Scholar 

  12. Rangel, I.D., Guerra, S.S., Sidorov, G.: Creación y evaluación de un diccionario marcado con emociones y ponderado para el español. Onomázein 29, 31–46 (2014)

    Article  Google Scholar 

  13. Padró, L., Stanilovsky, E.: FreeLing 3.0: towards wider multilinguality. In: Proceedings of the Language Resources and Evaluation Conference, Istanbul, Turkey, ELRA (2012)

    Google Scholar 

  14. Bartz-Beielstein, T., Branke, J., Mehnen, J., Mersmann, O.: Evolutionary algorithms. WIREs Data Min. Knowl. Disc. 4, 178–195 (2014)

    Article  Google Scholar 

  15. Keshavarz, H., Abadeh, M.S.: ALGA: adaptive lexicon learning using genetic algorithm for sentiment analysis of microblogs. Knowl. Based Syst. 122, 1–16 (2017)

    Article  Google Scholar 

  16. Machová, K., Mikula, M., Gao, X., Mach, M.: Lexicon-based sentiment analysis using the particle swarm optimization. Electronics 9, 1317 (2020)

    Article  Google Scholar 

  17. Sourabh, K., Singh, C.S., Vijay, K.: A review on genetic algorithm: past, present, and future. Multimed. Tools App. 80, 8091–8126 (2021)

    Article  Google Scholar 

  18. Fernández, A., García, S., Galar, M., Prati, R.C., Krawczyk, B., Herrera, F.: Learning from Imbalanced Data Sets. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98074-4

    Book  Google Scholar 

  19. Estabrooks, A., Jo, T., Japkowicz, N.: A multiple resampling method for learning from imbalanced data sets. Comput. Intell. 20, 18–36 (2004)

    Article  MathSciNet  Google Scholar 

  20. Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18, 1–5 (2017)

    Google Scholar 

Download references

Acknowledgments

We thank the support of Insituto Politécnico Nacional (IPN), ESCOM-IPN, SIP-IPN projects numbers: SIP-20220620, SIP-2083, SIP-20220925 COFAA-IPN, EDI-IPN and CONACyT-SNI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar J. Gambino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castillo-Montoya, JA., Gómez-Pérez, JF., Rosales-Onofre, T., Torres-López, MA., Gambino, O.J. (2022). Sentiment Analysis in the Rest-Mex Challenge. In: Pichardo Lagunas, O., Martínez-Miranda, J., Martínez Seis, B. (eds) Advances in Computational Intelligence. MICAI 2022. Lecture Notes in Computer Science(), vol 13613. Springer, Cham. https://doi.org/10.1007/978-3-031-19496-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19496-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19495-5

  • Online ISBN: 978-3-031-19496-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics