Skip to main content

Takagi-Sugeno Type Neuro Fuzzy System Model Based Fault Diagnostic in Photovoltaic System

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13613))

Included in the following conference series:

  • 506 Accesses

Abstract

Exposing photovoltaic installations to the outdoors for a long time leads to various breakdowns. Accurate and quantitative diagnosis of defect severity is vital for decision-making given the cost of defect removal. In this paper, a Takagi-Sugeno type neuro-fuzzy approach for the detection, identification and location of faults in solar photovoltaic systems is proposed. Then, an algorithm for optimizing the structure of the neuro-fuzzy model is developed, in order to improve the convergence capacity, resolve the influence of random parameters on the predictive performances, and to reduce both the number of synaptic weights and membership functions. This approach accurately detects, identifies and locates photovoltaic faults based on measurements of fault current, photovoltaic voltage, irradiance level, temperature and weather. Various fault scenarios are experimentally verified and validated in a large-scale solar photovoltaic power plant in order to demonstrate the efficiency and accuracy of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toledo, O.M., Oliveira Filho, D., Diniz, A.S.A.C., Martins, J.H., Vale, M.H.M.: Methodology for evaluation of grid-tie connection of distributed energy resources - case study with photovoltaic and energy storage. IEEE Trans. Power Syst. 28(2), 1132–1139 (2013). https://doi.org/10.1109/TPWRS.2012.2207971

    Article  Google Scholar 

  2. Brooks, A.E., Cormode, D., Cronin, A.D., Kam-Lum, E.: PV system power loss and module damage due to partial shade and bypass diode failure depend on cell behavior in reverse bias. In: Paper Presented at the 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015 (2015). https://doi.org/10.1109/PVSC.2015.7356290

  3. Bressan, M., El Basri, Y., Galeano, A.G., Alonso, C.: A shadow fault detection method based on the standard error analysis of I-V curves. Renew. Energy 99, 1181–1190 (2016). https://doi.org/10.1016/j.renene.2016.08.028

    Article  Google Scholar 

  4. Daliento, S., Di Napoli, F., Guerriero, P., d’Alessandro, V.: A modified bypass circuit for improved hot spot reliability of solar panels subject to partial shading. Sol. Energy 134, 211–218 (2016). https://doi.org/10.1016/j.solener.2016.05.001

    Article  Google Scholar 

  5. Batzelis, E.I., Georgilakis, P.S., Papathanassiou, S.A.: Energy models for photovoltaic systems under partial shading conditions: a comprehensive review. IET Renew. Power Gener. 9(4), 340–349 (2015). https://doi.org/10.1049/iet-rpg.2014.0207

    Article  Google Scholar 

  6. Jena, D., Ramana, V.V.: Modeling of photovoltaic system for uniform and non-uniform irradiance: a critical review. Renew. Sustain. Energy Rev. 52, 400–417 (2015). https://doi.org/10.1016/j.rser.2015.07.079

    Article  Google Scholar 

  7. Hidalgo-Gonzalez, P.L., Brooks, A.E., Kopp, E.S., Lonij, V.P., Cronin, A.D.: String-level (kW-scale) IV curves from different module types under partial shade. In: Paper Presented at the Conference Record of the IEEE Photovoltaic Specialists Conference, pp. 1442–1447 (2012). https://doi.org/10.1109/PVSC.2012.6317868

  8. Bai, J., Cao, Y., Hao, Y., Zhang, Z., Liu, S., Cao, F.: Characteristic output of PV systems under partial shading or mismatch conditions. Sol. Energy 112, 41–54 (2015). https://doi.org/10.1016/j.solener.2014.09.048

    Article  Google Scholar 

  9. MacAlpine, S., Deline, C., Erickson, R., Brandemuehl, M.: Module mismatch loss and recoverable power in unshaded PV installations. In: Paper Presented at the Conference Record of the IEEE Photovoltaic Specialists Conference, pp. 1388–1392 (2012). https://doi.org/10.1109/PVSC.2012.6317858

  10. Daliento, S., et al.: Monitoring, diagnosis, and power forecasting for photovoltaic fields: a review. Int. J. Photoenergy 2017 (2017). https://doi.org/10.1155/2017/1356851

  11. Li, B., Delpha, C., Migan-Dubois, A., Diallo, D.: Fault diagnosis of photovoltaic panels using full I-V characteristics and machine learning techniques. Energy Convers. Manag. 248, 114785 (2021). https://doi.org/10.1016/j.enconman.2021.114785

    Article  Google Scholar 

  12. Haidari, P., Hajiahmad, A., Jafari, A., Nasiri, A.: Deep learning-based model for fault classification in solar modules using infrared images. Sustain. Energy Technol. Assess. 52, 102110 (2022). https://doi.org/10.1016/j.seta.2022.102110

    Article  Google Scholar 

  13. Iqbal, M.S., Niazi, Y.A.K., Khan, U.A., Lee, B.: Real-time fault detection system for large scale grid integrated solar photovoltaic power plants. Int. J. Electr. Power Energy Syst. 130, 10690 (2021). https://doi.org/10.1016/j.ijepes.2021.106902

    Article  Google Scholar 

  14. Voutsinas, S., Karolidis, D., Voyiatzis, I., Samarakou, M.: Development of a multi-output feed-forward neural network for fault detection in photovoltaic systems. Energy Rep. 8, 33–42 (2022). https://doi.org/10.1016/j.egyr.2022.06.107

    Article  Google Scholar 

  15. Ying, S., et al.: Dynamic probability modeling of photovoltaic strings and its application in fault diagnosis. Energy Rep. 8, 6270–6279 (2022). https://doi.org/10.1016/j.egyr.2022.04.072

    Article  Google Scholar 

  16. Van Gompel, J., Spina, D., Develder, C.: Satellite based fault diagnosis of photovoltaic systems using recurrent neural networks. Appl. Energy 305, 117874 (2022). https://doi.org/10.1016/j.apenergy.2021.117874

    Article  Google Scholar 

  17. Liu, Y., et al.: Intelligent fault diagnosis of photovoltaic array based on variable predictive models and I-V curves. Sol. Energy 237, 340–351 (2022). https://doi.org/10.1016/j.solener.2022.03.062

    Article  Google Scholar 

  18. Das, S., Hazra, A., Basu, M.: Metaheuristic optimization based fault diagnosis strategy for solar photovoltaic systems under non-uniform irradiance. Renewable Energy 118, 452–467 (2018). https://doi.org/10.1016/j.renene.2017.10.053

    Article  Google Scholar 

  19. Abbas, M., Zhang, D.: A smart fault detection approach for PV modules using adaptive neuro-fuzzy inference framework. Energy Rep. 7, 2962–2975 (2021). https://doi.org/10.1016/j.egyr.2021.04.059

    Article  Google Scholar 

  20. Herrmann, W., Wiesner, W., Vaassen, W.: Hot spot investigations on PV modules - new concepts for a test standard and consequences for module design with respect to bypass diodes. In: Paper Presented at the Conference Record of the IEEE Photovoltaic Specialists Conference, pp. 1129–1132 (1997)

    Google Scholar 

  21. Douiri, S.M., El Bernoussi, S.: An ant algorithm for the sum coloring problem. Int. J. Appl. Math. Stat. 27(3), 102–110 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Douiri, M.R., Cherkaoui, M.: Comparative study of various artificial intelligence approaches applied to direct torque control of induction motor drives. Front. Energy 7(4), 456–467 (2013). https://doi.org/10.1007/s11708-013-0264-8

    Article  Google Scholar 

  23. Douiri, M.R.: A predictive model for solar photovoltaic power based on computational intelligence technique. Arab. J. Sci. Eng. 44(8), 6923–6940 (2019). https://doi.org/10.1007/s13369-019-03725-w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moulay Rachid Douiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Douiri, M.R., Aouzale, N. (2022). Takagi-Sugeno Type Neuro Fuzzy System Model Based Fault Diagnostic in Photovoltaic System. In: Pichardo Lagunas, O., Martínez-Miranda, J., Martínez Seis, B. (eds) Advances in Computational Intelligence. MICAI 2022. Lecture Notes in Computer Science(), vol 13613. Springer, Cham. https://doi.org/10.1007/978-3-031-19496-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19496-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19495-5

  • Online ISBN: 978-3-031-19496-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics