Skip to main content

BrainActivity1: A Framework of EEG Data Collection and Machine Learning Analysis for College Students

  • Conference paper
  • First Online:
HCI International 2022 – Late Breaking Posters (HCII 2022)

Abstract

Using Machine Learning and Deep Learning to predict cognitive tasks from electroencephalography (EEG) signals has been a fast-developing area in Brain-Computer Interfaces (BCI). However, during the COVID-19 pandemic, data collection and analysis could be more challenging than before. This paper explored machine learning algorithms that can run efficiently on personal computers for BCI classification tasks. Also, we investigated a way to conduct such BCI experiments remotely via Zoom. The results showed that Random Forest and RBF SVM performed well for EEG classification tasks. The remote experiment during the pandemic yielded several challenges, and we discussed the possible solutions; nevertheless, we developed a protocol that grants non-experts who are interested a guideline for such data collection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Appriou, A., Cichocki, A., Lotte, F.: Modern machine-learning algorithms: for classifying cognitive and affective states from electroencephalography signals. IEEE Syst. Man Cybern. Mag. 6(3), 29–38 (2020)

    Article  Google Scholar 

  2. Basaklar, T., Tuncel, Y., An, S., Ogras, U.: Wearable devices and low-power design for smart health applications: challenges and opportunities. In: 2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), pp. 1–1. IEEE (2021)

    Google Scholar 

  3. Bashivan, P., Bidelman, G.M., Yeasin, M.: Spectrotemporal dynamics of the EEG during working memory encoding and maintenance predicts individual behavioral capacity. Eur. J. Neurosci. 40(12), 3774–3784 (2014)

    Article  Google Scholar 

  4. Bashivan, P., Rish, I., Heisig, S.: Mental state recognition via wearable EEG. arXiv preprint arXiv:1602.00985 (2016)

  5. Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448 (2015)

  6. Bhat, G., Tuncel, Y., An, S., Lee, H.G., Ogras, U.Y.: An ultra-low energy human activity recognition accelerator for wearable health applications. ACM Trans. Embed. Comput. Syst. (TECS) 18(5s), 1–22 (2019)

    Article  Google Scholar 

  7. Bird, J.J., Manso, L.J., Ribeiro, E.P., Ekart, A., Faria, D.R.: A study on mental state classification using EEG-based brain-machine interface. In: 2018 International Conference on Intelligent Systems (IS), pp. 795–800. IEEE (2018)

    Google Scholar 

  8. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    Article  MATH  Google Scholar 

  9. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  10. Breiman, L.: Classification and regression trees. Routledge (2017)

    Google Scholar 

  11. Cannard, C., Wahbeh, H., Delorme, A.: Validating the wearable muse headset for eeg spectral analysis and frontal alpha asymmetry. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 3603–3610. IEEE (2021)

    Google Scholar 

  12. Chevalier, J.A., Gramfort, A., Salmon, J., Thirion, B.: Statistical control for spatio-temporal MEG/EEG source imaging with desparsified multi-task lasso. arXiv preprint arXiv:2009.14310 (2020)

  13. Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019)

    Article  Google Scholar 

  14. Darvishi, A., Khosravi, H., Sadiq, S., Weber, B.: Neurophysiological measurements in higher education: a systematic literature review. Int. J. Artif. Intell. Educ. 1–41 (2021). https://doi.org/10.1007/s40593-021-00256-0

  15. Devlaminck, D., Waegeman, W., Bauwens, B., Wyns, B., Santens, P., Otte, G.: From circular ordinal regression to multilabel classification. In: Proceedings of the 2010 Workshop on Preference Learning (European Conference on Machine Learning, ECML), p. 15 (2010)

    Google Scholar 

  16. Dongare, S., Padole, D.: Categorization of EEG using hybrid features and voting classifier for motor imagination. In: 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), pp. 217–220. IEEE (2021)

    Google Scholar 

  17. Gu, J., et al.: Multi-phase cross-modal learning for noninvasive gene mutation prediction in hepatocellular carcinoma. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 5814–5817. IEEE (2020)

    Google Scholar 

  18. Ienca, M., Haselager, P., Emanuel, E.J.: Brain leaks and consumer neurotechnology. Nat. Biotechnol. 36(9), 805–810 (2018)

    Article  Google Scholar 

  19. Jamil, N., Belkacem, A.N., Ouhbi, S., Guger, C.: Cognitive and affective brain-computer interfaces for improving learning strategies and enhancing student capabilities: a systematic literature review. IEEE Access (2021)

    Google Scholar 

  20. Kaya, M., Binli, M.K., Ozbay, E., Yanar, H., Mishchenko, Y.: A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces. Sci. Data 5(1), 1–16 (2018)

    Article  Google Scholar 

  21. Lotte, F.: A tutorial on EEG signal-processing techniques for mental-state recognition in brain–computer interfaces. In: Miranda, E.R., Castet, J. (eds.) Guide to Brain-Computer Music Interfacing, pp. 133–161. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6584-2_7

    Chapter  Google Scholar 

  22. Lotte, F.: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces. Proc. IEEE 103(6), 871–890 (2015)

    Article  Google Scholar 

  23. Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)

    Google Scholar 

  24. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), R1 (2007)

    Article  Google Scholar 

  25. Lotte, F., Guan, C.: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans. Biomed. Eng. 58(2), 355–362 (2010)

    Article  Google Scholar 

  26. Lotte, F., Jeunet, C.: Towards improved BCI based on human learning principles. In: The 3rd International Winter Conference on Brain-Computer Interface, pp. 1–4. IEEE (2015)

    Google Scholar 

  27. Lotte, F., Jeunet, C., Mladenović, J., N’Kaoua, B., Pillette, L.: A BCI challenge for the signal processing community: considering the user in the loop (2018)

    Google Scholar 

  28. Miller, K.J.: A library of human electrocorticographic data and analyses. Nat. Hum. Behav. 3(11), 1225–1235 (2019)

    Article  Google Scholar 

  29. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Portillo-Lara, R., Tahirbegi, B., Chapman, C.A., Goding, J.A., Green, R.A.: Mind the gap: state-of-the-art technologies and applications for EEG-based brain-computer interfaces. APL Bioeng. 5(3), 031507 (2021)

    Google Scholar 

  31. Qian, P., Zhao, Z., Chen, C., Zeng, Z., Li, X.: Two eyes are better than one: exploiting binocular correlation for diabetic retinopathy severity grading. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2115–2118. IEEE (2021)

    Google Scholar 

  32. Qu, X., Hall, M., Sun, Y., Sekuler, R., Hickey, T.J.: A personalized reading coach using wearable EEG sensors-a pilot study of brainwave learning analytics. In: CSEDU (2), pp. 501–507 (2018)

    Google Scholar 

  33. Qu, X., Liu, P., Li, Z., Hickey, T.: Multi-class time continuity voting for EEG classification. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 24–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_3

    Chapter  Google Scholar 

  34. Qu, X., Liukasemsarn, S., Tu, J., Higgins, A., Hickey, T.J., Hall, M.H.: Identifying clinically and functionally distinct groups among healthy controls and first episode psychosis patients by clustering on EEG patterns. Front. Psychiatry, 938 (2020)

    Google Scholar 

  35. Qu, X., Mei, Q., Liu, P., Hickey, T.: Using EEG to distinguish between writing and typing for the same cognitive task. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 66–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_7

    Chapter  Google Scholar 

  36. Qu, X., Sun, Y., Sekuler, R., Hickey, T.: EEG markers of stem learning. In: 2018 IEEE Frontiers in Education Conference (FIE), pp. 1–9. IEEE (2018)

    Google Scholar 

  37. Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T.H., Faubert, J.: Deep learning-based electroencephalography analysis: a systematic review. J. Neural Eng. 16(5), 051001 (2019)

    Google Scholar 

  38. Xu, K., et al.: Multi-instance multi-label learning for gene mutation prediction in hepatocellular carcinoma. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 6095–6098. IEEE (2020)

    Google Scholar 

  39. Zhang, X., Yao, L., Wang, X., Monaghan, J.J., Mcalpine, D., Zhang, Y.: A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. J. Neural Eng. 18(3), 031002 (2020)

    Google Scholar 

  40. Zhao, Z., Chopra, K., Zeng, Z., Li, X.: Sea-net: squeeze-and-excitation attention net for diabetic retinopathy grading. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 2496–2500. IEEE (2020)

    Google Scholar 

  41. Zhao, Z., Xu, K., Li, S., Zeng, Z., Guan, C.: MT-UDA: towards unsupervised cross-modality medical image segmentation with limited source labels. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 293–303. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_28

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Z., Dou, G., Qu, X. (2022). BrainActivity1: A Framework of EEG Data Collection and Machine Learning Analysis for College Students. In: Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G. (eds) HCI International 2022 – Late Breaking Posters. HCII 2022. Communications in Computer and Information Science, vol 1654. Springer, Cham. https://doi.org/10.1007/978-3-031-19679-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19679-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19678-2

  • Online ISBN: 978-3-031-19679-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics