Abstract
Using Machine Learning and Deep Learning to predict cognitive tasks from electroencephalography (EEG) signals has been a fast-developing area in Brain-Computer Interfaces (BCI). However, during the COVID-19 pandemic, data collection and analysis could be more challenging than before. This paper explored machine learning algorithms that can run efficiently on personal computers for BCI classification tasks. Also, we investigated a way to conduct such BCI experiments remotely via Zoom. The results showed that Random Forest and RBF SVM performed well for EEG classification tasks. The remote experiment during the pandemic yielded several challenges, and we discussed the possible solutions; nevertheless, we developed a protocol that grants non-experts who are interested a guideline for such data collection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Appriou, A., Cichocki, A., Lotte, F.: Modern machine-learning algorithms: for classifying cognitive and affective states from electroencephalography signals. IEEE Syst. Man Cybern. Mag. 6(3), 29–38 (2020)
Basaklar, T., Tuncel, Y., An, S., Ogras, U.: Wearable devices and low-power design for smart health applications: challenges and opportunities. In: 2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), pp. 1–1. IEEE (2021)
Bashivan, P., Bidelman, G.M., Yeasin, M.: Spectrotemporal dynamics of the EEG during working memory encoding and maintenance predicts individual behavioral capacity. Eur. J. Neurosci. 40(12), 3774–3784 (2014)
Bashivan, P., Rish, I., Heisig, S.: Mental state recognition via wearable EEG. arXiv preprint arXiv:1602.00985 (2016)
Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448 (2015)
Bhat, G., Tuncel, Y., An, S., Lee, H.G., Ogras, U.Y.: An ultra-low energy human activity recognition accelerator for wearable health applications. ACM Trans. Embed. Comput. Syst. (TECS) 18(5s), 1–22 (2019)
Bird, J.J., Manso, L.J., Ribeiro, E.P., Ekart, A., Faria, D.R.: A study on mental state classification using EEG-based brain-machine interface. In: 2018 International Conference on Intelligent Systems (IS), pp. 795–800. IEEE (2018)
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Breiman, L.: Classification and regression trees. Routledge (2017)
Cannard, C., Wahbeh, H., Delorme, A.: Validating the wearable muse headset for eeg spectral analysis and frontal alpha asymmetry. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 3603–3610. IEEE (2021)
Chevalier, J.A., Gramfort, A., Salmon, J., Thirion, B.: Statistical control for spatio-temporal MEG/EEG source imaging with desparsified multi-task lasso. arXiv preprint arXiv:2009.14310 (2020)
Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019)
Darvishi, A., Khosravi, H., Sadiq, S., Weber, B.: Neurophysiological measurements in higher education: a systematic literature review. Int. J. Artif. Intell. Educ. 1–41 (2021). https://doi.org/10.1007/s40593-021-00256-0
Devlaminck, D., Waegeman, W., Bauwens, B., Wyns, B., Santens, P., Otte, G.: From circular ordinal regression to multilabel classification. In: Proceedings of the 2010 Workshop on Preference Learning (European Conference on Machine Learning, ECML), p. 15 (2010)
Dongare, S., Padole, D.: Categorization of EEG using hybrid features and voting classifier for motor imagination. In: 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), pp. 217–220. IEEE (2021)
Gu, J., et al.: Multi-phase cross-modal learning for noninvasive gene mutation prediction in hepatocellular carcinoma. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 5814–5817. IEEE (2020)
Ienca, M., Haselager, P., Emanuel, E.J.: Brain leaks and consumer neurotechnology. Nat. Biotechnol. 36(9), 805–810 (2018)
Jamil, N., Belkacem, A.N., Ouhbi, S., Guger, C.: Cognitive and affective brain-computer interfaces for improving learning strategies and enhancing student capabilities: a systematic literature review. IEEE Access (2021)
Kaya, M., Binli, M.K., Ozbay, E., Yanar, H., Mishchenko, Y.: A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces. Sci. Data 5(1), 1–16 (2018)
Lotte, F.: A tutorial on EEG signal-processing techniques for mental-state recognition in brain–computer interfaces. In: Miranda, E.R., Castet, J. (eds.) Guide to Brain-Computer Music Interfacing, pp. 133–161. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6584-2_7
Lotte, F.: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces. Proc. IEEE 103(6), 871–890 (2015)
Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)
Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), R1 (2007)
Lotte, F., Guan, C.: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans. Biomed. Eng. 58(2), 355–362 (2010)
Lotte, F., Jeunet, C.: Towards improved BCI based on human learning principles. In: The 3rd International Winter Conference on Brain-Computer Interface, pp. 1–4. IEEE (2015)
Lotte, F., Jeunet, C., Mladenović, J., N’Kaoua, B., Pillette, L.: A BCI challenge for the signal processing community: considering the user in the loop (2018)
Miller, K.J.: A library of human electrocorticographic data and analyses. Nat. Hum. Behav. 3(11), 1225–1235 (2019)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Portillo-Lara, R., Tahirbegi, B., Chapman, C.A., Goding, J.A., Green, R.A.: Mind the gap: state-of-the-art technologies and applications for EEG-based brain-computer interfaces. APL Bioeng. 5(3), 031507 (2021)
Qian, P., Zhao, Z., Chen, C., Zeng, Z., Li, X.: Two eyes are better than one: exploiting binocular correlation for diabetic retinopathy severity grading. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2115–2118. IEEE (2021)
Qu, X., Hall, M., Sun, Y., Sekuler, R., Hickey, T.J.: A personalized reading coach using wearable EEG sensors-a pilot study of brainwave learning analytics. In: CSEDU (2), pp. 501–507 (2018)
Qu, X., Liu, P., Li, Z., Hickey, T.: Multi-class time continuity voting for EEG classification. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 24–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_3
Qu, X., Liukasemsarn, S., Tu, J., Higgins, A., Hickey, T.J., Hall, M.H.: Identifying clinically and functionally distinct groups among healthy controls and first episode psychosis patients by clustering on EEG patterns. Front. Psychiatry, 938 (2020)
Qu, X., Mei, Q., Liu, P., Hickey, T.: Using EEG to distinguish between writing and typing for the same cognitive task. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 66–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_7
Qu, X., Sun, Y., Sekuler, R., Hickey, T.: EEG markers of stem learning. In: 2018 IEEE Frontiers in Education Conference (FIE), pp. 1–9. IEEE (2018)
Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T.H., Faubert, J.: Deep learning-based electroencephalography analysis: a systematic review. J. Neural Eng. 16(5), 051001 (2019)
Xu, K., et al.: Multi-instance multi-label learning for gene mutation prediction in hepatocellular carcinoma. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 6095–6098. IEEE (2020)
Zhang, X., Yao, L., Wang, X., Monaghan, J.J., Mcalpine, D., Zhang, Y.: A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. J. Neural Eng. 18(3), 031002 (2020)
Zhao, Z., Chopra, K., Zeng, Z., Li, X.: Sea-net: squeeze-and-excitation attention net for diabetic retinopathy grading. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 2496–2500. IEEE (2020)
Zhao, Z., Xu, K., Li, S., Zeng, Z., Guan, C.: MT-UDA: towards unsupervised cross-modality medical image segmentation with limited source labels. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 293–303. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_28
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, Z., Dou, G., Qu, X. (2022). BrainActivity1: A Framework of EEG Data Collection and Machine Learning Analysis for College Students. In: Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G. (eds) HCI International 2022 – Late Breaking Posters. HCII 2022. Communications in Computer and Information Science, vol 1654. Springer, Cham. https://doi.org/10.1007/978-3-031-19679-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-19679-9_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19678-2
Online ISBN: 978-3-031-19679-9
eBook Packages: Computer ScienceComputer Science (R0)