Skip to main content

A Normal Form for Matrix Multiplication Schemes

  • Conference paper
  • First Online:
Algebraic Informatics (CAI 2022)

Abstract

Schemes for exact multiplication of small matrices have a large symmetry group. This group defines an equivalence relation on the set of multiplication schemes. There are algorithms to decide whether two schemes are equivalent. However, for a large number of schemes a pairwise equivalence check becomes cumbersome. In this paper we propose an algorithm to compute a normal form of matrix multiplication schemes. This allows us to decide pairwise equivalence of a larger number of schemes efficiently.

M.K. was supported by the Austrian Science Fund (FWF) grant P31571-N32.

J.M. was supported by the Land Oberösterreich through the LIT-AI Lab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 522–539 (2021). https://doi.org/10.1137/1.9781611976465.32

  2. Berger, G.O., Absil, P.A., De Lathauwer, L., Jungers, R.M., Van Barel, M.: Equivalent polyadic decompositions of matrix multiplication tensors. J. Comput. Appl. Math. 406, 17, Paper no. 113941 (2022). https://doi.org/10.1016/j.cam.2021.113941

  3. Bläser, M.: On the complexity of the multiplication of matrices of small formats. J. Complex. 19(1), 43–60 (2003). https://doi.org/10.1016/S0885-064X(02)00007-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory, vol. 315. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  5. Courtois, N.T., Bard, G.V., Hulme, D.: A new general-purpose method to multiply \(3\times 3\) matrices using only 23 multiplications (2011). https://doi.org/10.48550/ARXIV.1108.2830

  6. de Groote, H.F.: On varieties of optimal algorithms for the computation of bilinear mappings ii. optimal algorithms for \(2\times 2\)-matrix multiplication. Theor. Comput. Sci. 7(2), 127–148 (1978). https://doi.org/10.1016/0304-3975(78)90045-2

    Article  MATH  Google Scholar 

  7. Heule, M.J.H., Kauers, M., Seidl, M.: New ways to multiply \(3\times 3\)-matrices. J. Symbolic Comput. 104, 899–916 (2021). https://doi.org/10.1016/j.jsc.2020.10.003

    Article  MathSciNet  MATH  Google Scholar 

  8. Johnson, R.W., McLoughlin, A.M.: Noncommutative bilinear algorithms for \(3\times 3\) matrix multiplication. SIAM J. Comput. 15(2), 595–603 (1986). https://doi.org/10.1137/0215043

    Article  MathSciNet  MATH  Google Scholar 

  9. Laderman, J.D.: A noncommutative algorithm for multiplying \(3\times 3\) matrices using \(23\) multiplications. Bull. Am. Math. Soc. 82(1), 126–128 (1976). https://doi.org/10.1090/S0002-9904-1976-13988-2

    Article  MathSciNet  MATH  Google Scholar 

  10. Oh, J., Kim, J., Moon, B.R.: On the inequivalence of bilinear algorithms for \(3\times 3\) matrix multiplication. Inf. Process. Lett. 113(17), 640–645 (2013). https://doi.org/10.1016/j.ipl.2013.05.011

    Article  MATH  Google Scholar 

  11. Rosowski, A.: Fast commutative matrix algorithm (2019). https://doi.org/10.48550/ARXIV.1904.07683

  12. Smirnov, A.V.: The bilinear complexity and practical algorithms for matrix multiplication. Comput. Math. Math. Phys. 53(12), 1781–1795 (2013). https://doi.org/10.1134/S0965542513120129

    Article  MathSciNet  Google Scholar 

  13. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356 (1969). https://doi.org/10.1007/BF02165411

    Article  MathSciNet  MATH  Google Scholar 

  14. Winograd, S.: On multiplication of \(2\times 2\) matrices. Linear Algebra Appl. 4(4), 381–388 (1971). https://doi.org/10.1016/0024-3795(71)90009-7

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Moosbauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kauers, M., Moosbauer, J. (2022). A Normal Form for Matrix Multiplication Schemes. In: Poulakis, D., Rahonis, G. (eds) Algebraic Informatics. CAI 2022. Lecture Notes in Computer Science, vol 13706. Springer, Cham. https://doi.org/10.1007/978-3-031-19685-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19685-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19684-3

  • Online ISBN: 978-3-031-19685-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics