Abstract
Schemes for exact multiplication of small matrices have a large symmetry group. This group defines an equivalence relation on the set of multiplication schemes. There are algorithms to decide whether two schemes are equivalent. However, for a large number of schemes a pairwise equivalence check becomes cumbersome. In this paper we propose an algorithm to compute a normal form of matrix multiplication schemes. This allows us to decide pairwise equivalence of a larger number of schemes efficiently.
M.K. was supported by the Austrian Science Fund (FWF) grant P31571-N32.
J.M. was supported by the Land Oberösterreich through the LIT-AI Lab.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 522–539 (2021). https://doi.org/10.1137/1.9781611976465.32
Berger, G.O., Absil, P.A., De Lathauwer, L., Jungers, R.M., Van Barel, M.: Equivalent polyadic decompositions of matrix multiplication tensors. J. Comput. Appl. Math. 406, 17, Paper no. 113941 (2022). https://doi.org/10.1016/j.cam.2021.113941
Bläser, M.: On the complexity of the multiplication of matrices of small formats. J. Complex. 19(1), 43–60 (2003). https://doi.org/10.1016/S0885-064X(02)00007-9
Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory, vol. 315. Springer, Heidelberg (2013)
Courtois, N.T., Bard, G.V., Hulme, D.: A new general-purpose method to multiply \(3\times 3\) matrices using only 23 multiplications (2011). https://doi.org/10.48550/ARXIV.1108.2830
de Groote, H.F.: On varieties of optimal algorithms for the computation of bilinear mappings ii. optimal algorithms for \(2\times 2\)-matrix multiplication. Theor. Comput. Sci. 7(2), 127–148 (1978). https://doi.org/10.1016/0304-3975(78)90045-2
Heule, M.J.H., Kauers, M., Seidl, M.: New ways to multiply \(3\times 3\)-matrices. J. Symbolic Comput. 104, 899–916 (2021). https://doi.org/10.1016/j.jsc.2020.10.003
Johnson, R.W., McLoughlin, A.M.: Noncommutative bilinear algorithms for \(3\times 3\) matrix multiplication. SIAM J. Comput. 15(2), 595–603 (1986). https://doi.org/10.1137/0215043
Laderman, J.D.: A noncommutative algorithm for multiplying \(3\times 3\) matrices using \(23\) multiplications. Bull. Am. Math. Soc. 82(1), 126–128 (1976). https://doi.org/10.1090/S0002-9904-1976-13988-2
Oh, J., Kim, J., Moon, B.R.: On the inequivalence of bilinear algorithms for \(3\times 3\) matrix multiplication. Inf. Process. Lett. 113(17), 640–645 (2013). https://doi.org/10.1016/j.ipl.2013.05.011
Rosowski, A.: Fast commutative matrix algorithm (2019). https://doi.org/10.48550/ARXIV.1904.07683
Smirnov, A.V.: The bilinear complexity and practical algorithms for matrix multiplication. Comput. Math. Math. Phys. 53(12), 1781–1795 (2013). https://doi.org/10.1134/S0965542513120129
Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356 (1969). https://doi.org/10.1007/BF02165411
Winograd, S.: On multiplication of \(2\times 2\) matrices. Linear Algebra Appl. 4(4), 381–388 (1971). https://doi.org/10.1016/0024-3795(71)90009-7
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kauers, M., Moosbauer, J. (2022). A Normal Form for Matrix Multiplication Schemes. In: Poulakis, D., Rahonis, G. (eds) Algebraic Informatics. CAI 2022. Lecture Notes in Computer Science, vol 13706. Springer, Cham. https://doi.org/10.1007/978-3-031-19685-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-19685-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19684-3
Online ISBN: 978-3-031-19685-0
eBook Packages: Computer ScienceComputer Science (R0)