Skip to main content

On Some Algebraic Ways to Calculate Zeros of the Riemann Zeta Function

  • Conference paper
  • First Online:
Algebraic Informatics (CAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13706))

Included in the following conference series:

Abstract

The Riemann zeta function is an important number-theoretical tool for studying prime numbers. The first part of the paper is a short survey of some known results about this function. The emphasis is given to the possibility to formulate the celebrated Riemann Hypothesis as a statement from class \(\mathrm {\Pi }^0_1\) in the arithmetical hierarchy.

In the second part of the paper the author demonstrates by numerical examples some non-evident ways for finding zeros of the zeta function. Calculations require the knowledge of the value of this function and of N its initial derivatives at one point and consist in solving N systems of linear equations with N unknowns.

These methods are not intended for practical calculations but are supposed to be useful for the study of the zeros.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    After M. Davis, H. Putnam, J. Robinson and Yu. Matiyasevich; for detailed proofs see, for example, [14, 19, 23, 25, 30].

References

  1. Aaronson, S.: The blog. http://www.scottaaronson.com/blog/?p=2741. Accessed 25 Aug 2022

  2. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. Math. (2) 160(2), 781–793 (2004). https://doi.org/10.4007/annals.2004.160.781

  3. Booker, A.R.: Artin’s conjecture, Turing’s method, and the Riemann hypothesis. Exp. Math. 15(4), 385–407 (2006). https://doi.org/10.1080/10586458.2006.10128976

    Article  MathSciNet  MATH  Google Scholar 

  4. Booker, A.R.: Turing and the Riemann hypothesis. Notices Am. Math. Soc. 53(10), 1208–1211 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Broughan, K.: Equivalents of the Riemann Hypothesis. Volume 1: Arithmetic Equivalents. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781108178228

  6. Broughan, K.: Equivalents of the Riemann Hypothesis. Volume 2: Analytic Equivalents. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781108178266

  7. Caceres, J.M.H.: The Riemann hypothesis and Diophantine equations. Master’s thesis Mathematics, Mathematical Institute, University of Bonn (2018)

    Google Scholar 

  8. Calude, C.S., Calude, E.: The complexity of mathematical problems: an overview of results and open problems. Int. J. Unconv. Comput. 9(3–4), 327–343 (2013)

    Google Scholar 

  9. Calude, C.S., Calude, E.: Evaluating the complexity of mathematical problems. I. Complex Syst. 18(3), 267–285 (2009)

    Article  MathSciNet  Google Scholar 

  10. Calude, C.S., Calude, E.: Evaluating the complexity of mathematical problems. II. Complex Syst. 18(4), 387–401 (2010)

    Article  MathSciNet  Google Scholar 

  11. Calude, C.S., Calude, E., Dinneen, M.J.: A new measure of the difficulty of problems. J. Mult.-Val. Log. Soft Comput. 12(3–4), 285–307 (2006)

    Google Scholar 

  12. Calude, E.: The complexity of Riemann’s hypothesis. J. Mult.-Val. Log. Soft Comput. 18(3–4), 257–265 (2012)

    Google Scholar 

  13. Cooper, S.B., van Leeuwen, J. (eds.): Alan Turing - His Work and Impact. Elsevier Science, Amsterdam (2013)

    Google Scholar 

  14. Davis, M.: Hilbert’s tenth problem is unsolvable. Am. Math. Mon. 80, 233–269 (1973). https://doi.org/10.2307/2318447

    Article  MathSciNet  MATH  Google Scholar 

  15. Davis, M., Matijasevic̆, Y., Robinson, J.: Hilbert’s tenth problem: diophantine equations: positive aspects of a negative solution. Proc. Symp. Pure Math. 28, 323–378 (1976). https://doi.org/10.1090/pspum/028.2

  16. Fodden, B.: Diophantine equations and the generalized Riemann hypothesis. J. Number Theory 131(9), 1672–1690 (2011). https://doi.org/10.1016/j.jnt.2011.01.017

    Article  MathSciNet  MATH  Google Scholar 

  17. Hadamard, J.: Sur la distribution des zéros de la fonction \(\zeta (s)\) et ses conséquences arithmétiques. Bulletin de la Société Mathématique de France 24, 199–220 (1896). https://doi.org/10.24033/bsmf.545

  18. Hilbert, D.: Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker Kongress zu Paris 1900. Nachr. K. Ges. Wiss., Göttingen, Math.-Phys. Kl, pp. 253–297 (1900). Reprinted in Gesammelte Abhandlungen, Springer, Berlin 3 (1935); Chelsea, New York (1965). English translation: Bull. Amer. Math. Soc. 8, 437–479 (1901–1902); reprinted. In: Browder (ed.) Mathematical Developments arising from Hilbert Problems, Proceedings of Symposia in Pure Mathematics 28, American Mathematical Society, pp. 1–34 (1976)

    Google Scholar 

  19. Jones, J.P., Matiyasevich, Y.V.: Register machine proof of the theorem on exponential Diophantine representation of enumerable sets. J. Symb. Log. 49, 818–829 (1984). https://doi.org/10.2307/2274135

    Article  MathSciNet  MATH  Google Scholar 

  20. Kreisel, G.: Mathematical significance of consistency proofs. J. Symb. Log. 23(2), 155–182 (1958)

    Article  MathSciNet  Google Scholar 

  21. Lambek, J.: How to program an infinite abacus. Can. Math. Bull. 4, 295–302 (1961). https://doi.org/10.4153/CMB-1961-032-6

    Article  MathSciNet  MATH  Google Scholar 

  22. Lenstra Jr, H.W., Pomerance, C.: Primality testing with Gaussian periods. http://www.math.dartmouth.edu/~carlp/aks041411.pdf. Accessed 25 Aug 2022

  23. Manin, Y.I., Panchishkin, A.A.: Introduction to number theory (in Russian). Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 49, 348 p. (1990). Translated as: Introduction to modern number theory. Fundamental problems, ideas and theories. Second edition. Encyclopaedia of Mathematical Sciences, 49. Springer-Verlag, Berlin, 2005. xvi+514 pp. ISBN: 978-3-540-20364-3; 3-540-20364-8

    Google Scholar 

  24. Matiyasevich, Y.: The Riemann hypothesis in computer science. Theor. Comput. Sci. 807, 257–265 (2020). https://doi.org/10.1016/j.tcs.2019.07.028

    Article  MathSciNet  MATH  Google Scholar 

  25. Matiyasevich, Y.V.: Hilbert’s Tenth Problem (in Russian). Fizmatlit (1993). http://logic.pdmi.ras.ru/~yumat/H10Pbook. English translation: MIT Press, Cambridge (Massachusetts) London (1993). http://mitpress.mit.edu/9780262132954/. French translation: Masson, Paris Milan Barselone (1995). Greek translation: EURYALOS editions, Athens, 2022

  26. Matiyasevich, Y.V.: The Riemann Hypothesis as the parity of binomial coefficients (in Russian). Chebyshevskii Sb. 19, 46–60 (2018). https://doi.org/10.22405/2226-8383-2018-19-3-46-60

  27. Matiyasevich, Y.V.: Hunting zeros of Dirichlet series by linear algebra. I. POMI Preprints (01), 18 p. (2020). https://doi.org/10.13140/RG.2.2.29328.43528

  28. Matiyasevich, Y.V.: Hunting zeros of Dirichlet series by linear algebra. II. POMI Preprints (01), 18 p. (2022). https://doi.org/10.13140/RG.2.2.20434.22720

  29. Matiyasevich, Y.V.: Hunting zeros of Dirichlet series by linear algebra III (in Russian). POMI Preprints (03), 31 p. (2022). https://doi.org/10.13140/RG.2.2.28325.99044. Extended English abstract http://logic.pdmi.ras.ru/~yumat/publications/papers/139_paper/eng_abstract_ext.pdf. Accessed 25 Aug 2022

  30. Matiyasevich, Y.: Hilbert’s tenth problem: what was done and what is to be done. In: Hilbert’s Tenth Problem: Relations with Arithmetic and Algebraic Geometry. Proceedings of the workshop, Ghent University, Belgium, 2–5 November 1999, pp. 1–47. American Mathematical Society, Providence (2000)

    Google Scholar 

  31. Melzak, Z.A.: An informal arithmetical approach to computability and computation. Can. Math. Bull. 4, 279–293 (1961). https://doi.org/10.4153/CMB-1961-031-9

    Article  MathSciNet  MATH  Google Scholar 

  32. Miller, G.L.: Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci. 13, 300–317 (1976). https://doi.org/10.1016/S0022-0000(76)80043-8

    Article  MathSciNet  MATH  Google Scholar 

  33. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall Series in Automatic Computation, vol. VII, 317 p. Prentice-Hall, Inc., Englewood Cliffs (1967)

    Google Scholar 

  34. Minsky, M.L.: Recursive unsolvability of Post’s problem of “Tag” and other topics in theory of Turing machines. Ann. Math. 2(74), 437–455 (1961). https://doi.org/10.2307/1970290

  35. Moroz, B.Z.: The Riemann hypothesis and Diophantine equations (in Russian). St. Petersburg Mathematical Society Preprints (03) (2018). http://www.mathsoc.spb.ru/preprint/2018/index.html#03. Accessed 25 Aug 2022

  36. Murty, M.R., Fodden, B.: Hilbert’s Tenth Problem. An Introduction to Logic, Number Theory, and Computability. Student Mathematical Library, vol. 88. American Mathematical Society (AMS), Providence (2019). https://doi.org/10.1090/stml/088

  37. Nayebi, A.: On the Riemann hypothesis and Hilbert’s tenth problem. Unpublished Manuscript, February 2012. http://web.stanford.edu/~anayebi/projects/RH_Diophantine.pdf. Accessed 25 Aug 2022

  38. Riemann, B.: Über die Anzhal der Primzahlen unter einer gegebenen Grösse. Monatsberichter der Berliner Akademie (1859), included into: Riemann, B. Gesammelte Werke. Teubner, Leipzig, 1892; reprinted by Dover Books, New York (1953). http://www.claymath.org/publications/riemanns-1859-manuscript. English translation. http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Zeta/EZeta.pdf

  39. Turing, A.M.: Systems of logic based on ordinals. Proc. Lond. Math. Soc. 2(45), 161–228 (1939). https://doi.org/10.1112/plms/s2-45.1.161

    Article  MathSciNet  MATH  Google Scholar 

  40. de la Vallée Poussin, C.J.: Recherches analytiques de la théorie des nombres premiers. Annales de la Société Scientifique de Bruxelles 20B, 183–256 (1896)

    MATH  Google Scholar 

  41. Yedidia, A., Aaronson, S.: A relatively small Turing machine whose behavior is independent of set theory. Complex Syst. 25, 297–327 (2016). https://doi.org/10.25088/ComplexSystems.25.4.297

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Matiyasevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matiyasevich, Y. (2022). On Some Algebraic Ways to Calculate Zeros of the Riemann Zeta Function. In: Poulakis, D., Rahonis, G. (eds) Algebraic Informatics. CAI 2022. Lecture Notes in Computer Science, vol 13706. Springer, Cham. https://doi.org/10.1007/978-3-031-19685-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19685-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19684-3

  • Online ISBN: 978-3-031-19685-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics