Skip to main content

Early Dementia Identification: On the Use of Random Handwriting Strokes

  • Conference paper
  • First Online:
Intertwining Graphonomics with Human Movements (IGS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13424))

Included in the following conference series:

  • 398 Accesses

Abstract

Timely diagnosis plays a crucial role for the treatment of neurodegenerative diseases. In particular, Dementia Identification in early stages is important to help patients have a better quality of life and to help clinicians to find a pathway of treatments to slow the effects. To the aim, a wide set of different handwriting tasks is here considered, and Shallow and Deep Learning methodologies are compared. Furthermore, Random Hybrid Stroke (RHS) are adopted to represent the handwriting time series. This solution outperforms the classical Deep Learning methodology and it is compared to a state-of-art shallow learning approach. Finally, a decision-level fusion for the results is adopted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Impedovo, D., Pirlo, G.: Dynamic handwriting analysis for the assessment of neurodegenerative diseases: a pattern recognition perspective. IEEE Rev. Biomed. Eng. 12, 209–220 (2018). https://doi.org/10.1109/RBME.2018.2840679

    Article  Google Scholar 

  2. de Stefano, C., Fontanella, F., Impedovo, D., Pirlo, G., Scotto di Freca, A.: Handwriting analysis to support neurodegenerative diseases diagnosis: a review. Pattern Recogn. Lett. 121, 37–45 (2019). https://doi.org/10.1016/J.PATREC.2018.05.013

  3. Ström, F., Koker, R.: A parallel neural network approach to prediction of Parkinson’s disease. Expert Syst. Appl. 38, 12470–12474 (2011). https://doi.org/10.1016/J.ESWA.2011.04.028

    Article  Google Scholar 

  4. Faundez-Zanuy, M., Mekyska, J., Impedovo, D.: Online handwriting, signature and touch dynamics: tasks and potential applications in the field of security and health. Cogn. Comput. 13, 1406–1421 (2021). https://doi.org/10.1007/S12559-021-09938-2/TABLES/1

    Article  Google Scholar 

  5. Impedovo, D., Pirlo, G., Vessio, G., Angelillo, M.T.: A Handwriting-based protocol for assessing neurodegenerative dementia. Cogn. Comput. 11(4), 576–586 (2019). https://doi.org/10.1007/s12559-019-09642-2

    Article  Google Scholar 

  6. Cilia, N.D., De Stefano, C., Fontanella, F., Molinara, M., Scotto Di Freca, A.: Using handwriting features to characterize cognitive impairment. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) Image Analysis and Processing – ICIAP 2019. LNCS, vol. 11752, pp. 683–693. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30645-8_62

    Chapter  Google Scholar 

  7. Kahindo, C., El-Yacoubi, M.A., Garcia-Salicetti, S., Rigaud, A.-S., Cristancho-Lacroix, V.: Characterizing early-stage alzheimer through spatiotemporal dynamics of handwriting; characterizing early-stage alzheimer through spatiotemporal dynamics of handwriting. IEEE Sig. Process. Lett. 25 (2018). https://doi.org/10.1109/LSP.2018.2794500

  8. Cilia, N.D.: Handwriting analysis to support Alzheimer disease diagnosis: a preliminary study. In: Vento, M., Percannella, G. (eds.) Computer Analysis of Images and Patterns, vol. 11679, pp. 143–151. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29891-3_13

    Chapter  Google Scholar 

  9. Cilia, N.D., de Stefano, C., Fontanella, F., di Freca, A.S.: An experimental protocol to support cognitive impairment diagnosis by using handwriting analysis. Procedia Comput. Sci. 141, 466–471 (2018). https://doi.org/10.1016/J.PROCS.2018.10.141

    Article  Google Scholar 

  10. Dentamaro, V., Impedovo, D., Pirlo, G.: An analysis of tasks and features for neuro-degenerative disease assessment by handwriting. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12661, pp. 536–545. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68763-2_41

    Chapter  Google Scholar 

  11. Dentamaro, V., Giglio, P., Impedovo, D., Pirlo, G.: Benchmarking of shallow learning and deep learning techniques with transfer learning for neurodegenerative disease assessment through handwriting. In: Barney Smith, E.H., Pal, U. (eds.) ICDAR 2021. LNCS, vol. 12917, pp. 7–20. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86159-9_1

    Chapter  Google Scholar 

  12. Drotár, P., Mekyska, J., Rektorová, I., Masarová, L., Smékal, Z., Faundez-Zanuy, M.: Decision support framework for Parkinson’s disease based on novel handwriting markers. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 508–516 (2015). https://doi.org/10.1109/TNSRE.2014.2359997

    Article  Google Scholar 

  13. Likforman-Sulem, L., Esposito, A., Faundez-Zanuy, M., Clemencon, S., Cordasco, G.: EMOTHAW: a novel database for emotional state recognition from handwriting and drawing. IEEE Trans. Hum.-Mach. Syst. 47, 273–284 (2017). https://doi.org/10.1109/THMS.2016.2635441

    Article  Google Scholar 

  14. Improved Spiral Test Using Digitized Graphics Tablet for Monitoring Parkinson’s Disease. https://www.researchgate.net/publication/291814924_Improved_Spiral_Test_Using_Digitized_Graphics_Tablet_for_Monitoring_Parkinson’s_Disease. Accessed 13 Feb 2022

  15. Impedovo, D., et al.: Writing Generation Model for Health Care neuromuscular System. 7° Convegno Nazionale di Viticoltura, Piacenza, 9–11 luglio 2018, p. 43 (2013)

    Google Scholar 

  16. Pereira, C.R., Weber, S.A.T., Hook, C., Rosa, G.H., Papa, J.P.: Deep learning-aided parkinson’s disease diagnosis from handwritten dynamics, pp. 340–346 (2016). https://doi.org/10.1109/SIBGRAPI.2016.054

  17. Pereira, C.R., et al.: A step towards the automated diagnosis of Parkinson’s disease: analyzing handwriting movements. In: 2015 IEEE 28th International Symposium on Computer-Based Medical Systems, pp. 171–176 (2015). https://doi.org/10.1109/CBMS.2015.34

  18. Zhang, X.Y., Xie, G.S., Liu, C.L., Bengio, Y.: End-to-end online writer identification with recurrent neural network. IEEE Trans. Hum.-Mach. Syst. 47, 285–292 (2017). https://doi.org/10.1109/THMS.2016.2634921

  19. Doetsch, P., Zeyer, A., Ney, H.: Bidirectional decoder networks for attention-based end-to-end offline handwriting recognition (2016)

    Google Scholar 

  20. Vaswani, A., et al.: Attention is all you need. CoRR. abs/1706.03762 https://arxiv.org/abs/1706.03762 (2017)

  21. Puigcerver, J.: Are multidimensional recurrent layers really necessary for handwritten text recognition? In: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, vol. 1, pp. 67–72 (2017). https://doi.org/10.1109/ICDAR.2017.20

  22. Breiman, L.: Random forests (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Semeraro .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gattulli, V., Impedovo, D., Pirlo, G., Semeraro, G. (2022). Early Dementia Identification: On the Use of Random Handwriting Strokes. In: Carmona-Duarte, C., Diaz, M., Ferrer, M.A., Morales, A. (eds) Intertwining Graphonomics with Human Movements. IGS 2022. Lecture Notes in Computer Science, vol 13424. Springer, Cham. https://doi.org/10.1007/978-3-031-19745-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19745-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19744-4

  • Online ISBN: 978-3-031-19745-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics