Skip to main content

Writer Retrieval and Writer Identification in Greek Papyri

  • Conference paper
  • First Online:
Intertwining Graphonomics with Human Movements (IGS 2022)

Abstract

The analysis of digitized historical manuscripts is typically addressed by paleographic experts. Writer identification refers to the classification of known writers while writer retrieval seeks to find the writer by means of image similarity in a dataset of images. While automatic writer identification/retrieval methods already provide promising results for many historical document types, papyri data is very challenging due to the fiber structures and severe artifacts. Thus, an important step for an improved writer identification is the preprocessing and feature sampling process. We investigate several methods and show that a good binarization is key to an improved writer identification in papyri writings. We focus mainly on writer retrieval using unsupervised feature methods based on traditional or self-supervised-based methods. It is, however, also comparable to the state of the art supervised deep learning-based method in the case of writer classification/re-identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    “Writer” and “scribe” is used interchangeably throughout the paper.

  2. 2.

    Meta-data on the images are available (reference, date, collection...) at https://d-scribes.philhist.unibas.ch/en/gkr-papyri/.

  3. 3.

    https://github.com/anguelos/tormentor.

References

  1. Asi, A., Abdalhaleem, A., Fecker, D., Märgner, V., El-Sana, J.: On writer identification for Arabic historical manuscripts. Int. J. Doc. Anal. Recogn. (IJDAR) 20(3), 173–187 (2017). https://doi.org/10.1007/s10032-017-0289-3. https://link.springer.com/10.1007/s10032-017-0289-3

  2. Brink, A., Smit, J., Bulacu, M., Schomaker, L.: Writer identification using directional ink-trace width measurements. Pattern Recogn. 45(1), 162–171 (2012). https://doi.org/10.1016/j.patcog.2011.07.005

    Article  Google Scholar 

  3. Bulacu, M., Schomaker, L.: Automatic handwriting identification on medieval documents. In: 14th International Conference on Image Analysis and Processing (ICIAP 2007), no. ICIAP, pp. 279–284. IEEE, Modena, September 2007

    Google Scholar 

  4. Bulacu, M., Schomaker, L., Vuurpijl, L.: Writer identification using edge-based directional features. In: Seventh International Conference on Document Analysis and Recognition (ICDAR), Edinburgh, pp. 937–941, August 2003. https://doi.org/10.1109/ICDAR.2003.1227797

  5. Christlein, V., Spranger, L., Seuret, M., Nicolaou, A., Král, P., Maier, A.: Deep generalized max pooling. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1090–1096, September 2019. https://doi.org/10.1109/ICDAR.2019.00177

  6. Christlein, V.: Handwriting analysis with focus on writer identification and writer retrieval. Ph.D. thesis, FAU Erlangen-Nürnberg (2019)

    Google Scholar 

  7. Christlein, V., Bernecker, D., Hönig, F., Maier, A., Angelopoulou, E.: Writer identification using GMM supervectors and exemplar-SVMs. Pattern Recogn. 63, 258–267 (2017). https://doi.org/10.1016/j.patcog.2016.10.005. https://www.sciencedirect.com/science/article/pii/S0031320316303211

  8. Christlein, V., Bernecker, D., Maier, A., Angelopoulou, E.: Offline writer identification using convolutional neural network activation features. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 540–552. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24947-6_45

    Chapter  Google Scholar 

  9. Christlein, V., et al.: Automatic Writer Identification in Historical Documents: A Case Study. Zeitschrift für digitale Geisteswissenschaften text/html (2016). https://doi.org/10.17175/2016_002. https://www.zfdg.de/2016_002

  10. Christlein, V., Gropp, M., Fiel, S., Maier, A.: Unsupervised feature learning for writer identification and writer retrieval. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, vol. 01, pp. 991–997, November 2017. https://doi.org/10.1109/ICDAR.2017.165

  11. Christlein, V., Maier, A.: Encoding CNN activations for writer recognition. In: 13th IAPR International Workshop on Document Analysis Systems, Vienna, pp. 169–174, April 2018. https://doi.org/10.1109/DAS.2018.9

  12. Cilia, N.D., De Stefano, C., Fontanella, F., Marthot-Santaniello, I., Scotto di Freca, A.: PapyRow: a dataset of row images from ancient Greek papyri for writers identification. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12667, pp. 223–234. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68787-8_16

    Chapter  Google Scholar 

  13. Fecker, D., et al.: Writer identification for historical Arabic documents. In: 2014 22nd International Conference on Pattern Recognition (ICPR), Stockholm, pp. 3050–3055, August 2014. https://doi.org/10.1109/ICPR.2014.526

  14. Fecker, D., Asi, A., Pantke, W., Märgner, V., El-Sana, J., Fingscheidt, T.: Document writer analysis with rejection for historical Arabic manuscripts. In: 2014 14th International Conference on Frontiers in Handwriting Recognition (ICFHR), Heraklion, pp. 743–748, September 2014. https://doi.org/10.1109/ICFHR.2014.130

  15. Fiel, S., Hollaus, F., Gau, M., Sablatnig, R.: Writer identification on historical Glagolitic documents. Doc. Recogn. Retr. 9021, 902102-1–902102-10 (2014). https://doi.org/10.1117/12.2042338

  16. Fiel, S., et al.: ICDAR2017 competition on historical document writer identification (historical-WI). In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, vol. 01, pp. 1377–1382, November 2017. https://doi.org/10.1109/ICDAR.2017.225

  17. Fiel, S., Sablatnig, R.: Writer identification and writer retrieval using the fisher vector on visual vocabularies. In: 2013 12th International Conference on Document Analysis and Recognition (ICDAR), Washington DC, pp. 545–549, August 2013. https://doi.org/10.1109/ICDAR.2013.114

  18. Fiel, S., Sablatnig, R.: Writer identification and retrieval using a convolutional neural network. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9257, pp. 26–37. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23117-4_3

    Chapter  Google Scholar 

  19. Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P., Schmid, C.: Aggregating local image descriptors into compact codes. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1704–1716 (2012). https://doi.org/10.1109/TPAMI.2011.235

    Article  Google Scholar 

  20. Krafft, O.: Bene Valete: Entwicklung und Typologie des Monogramms in Urkunden der Päpste und anderer Aussteller seit 1049. Eudora-Verlag, Leipzig, September 2010

    Google Scholar 

  21. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94. Nov

    Article  Google Scholar 

  22. Marti, U.V., Bunke, H.: The IAM-database: an English sentence database for offline handwriting recognition. Int. J. Doc. Anal. Recogn. 5(1), 39–46 (2002). https://doi.org/10.1007/s100320200071. https://www.springerlink.com/index/QD6A25KWJE4TU6V7.pdf

  23. Mohammed, H., Marthot-Santaniello, I., Märgner, V.: GRK-Papyri: a dataset of Greek handwriting on papyri for the task of writer identification. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 726–731 (2019). https://doi.org/10.1109/ICDAR.2019.00121

  24. Nasir, S., Siddiqi, I.: Learning features for writer identification from handwriting on Papyri. In: Djeddi, C., Kessentini, Y., Siddiqi, I., Jmaiel, M. (eds.) MedPRAI 2020. CCIS, vol. 1322, pp. 229–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71804-6_17

    Chapter  Google Scholar 

  25. Nasir, S., Siddiqi, I., Moetesum, M.: Writer characterization from handwriting on Papyri using multi-step feature learning. In: Barney Smith, E.H., Pal, U. (eds.) ICDAR 2021. LNCS, vol. 12916, pp. 451–465. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86198-8_32

    Chapter  Google Scholar 

  26. Nicolaou, A., Christlein, V., Riba, E., Shi, J., Vogeler, G., Seuret, M.: Tormentor: deterministic dynamic-path, data augmentations with fractals. In: 26th International Conference of Pattern Recognition (2022, accepted)

    Google Scholar 

  27. Pirrone, A., Beurton-Aimar, M., Journet, N.: Self-supervised deep metric learning for ancient papyrus fragments retrieval. Int. J. Doc. Anal. Recogn. (IJDAR) 24(3), 219–234 (2021). https://doi.org/10.1007/s10032-021-00369-1

    Article  Google Scholar 

  28. Popović, M., Dhali, M.A., Schomaker, L.: Artificial intelligence based writer identification generates new evidence for the unknown scribes of the Dead Sea Scrolls exemplified by the Great Isaiah Scroll (1QIsaa). PLOS ONE 16(4), 1–28 (2021). https://doi.org/10.1371/journal.pone.0249769

    Article  Google Scholar 

  29. Pratikakis, I., Zagoris, K., Karagiannis, X., Tsochatzidis, L., Mondal, T., Marthot-Santaniello, I.: ICDAR 2019 competition on document image binarization (DIBCO 2019). In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1547–1556, September 2019. https://doi.org/10.1109/ICDAR.2019.00249

  30. Pratikakis, I., Zagoris, K., Barlas, G., Gatos, B., Blumenstein, M.: ICDAR2017 Competition on Document Image Binarization (DIBCO 2017). In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), pp. 1395–1403 (2017). https://doi.org/10.1109/ICDAR.2017.228

  31. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  32. Shaus, A., Gerber, Y., Faigenbaum-Golovin, S., Sober, B., Piasetzky, E., Finkelstein, I.: Forensic document examination and algorithmic handwriting analysis of Judahite biblical period inscriptions reveal significant literacy level. PLOS ONE 15(9), 1–15 (2020). https://doi.org/10.1371/journal.pone.0237962

    Article  Google Scholar 

  33. Su, B., Lu, S., Tan, C.L.: Binarization of historical document images using the local maximum and minimum. In: 9th IAPR International Workshop on Document Analysis Systems, Boston, pp. 159–165, June 2010. https://doi.org/10.1145/1815330.1815351

  34. Wolf, L., et al.: Identifying join candidates in the Cairo Genizah. Int. J. Comput. Vis. 94(1), 118–135 (2011). https://doi.org/10.1007/s11263-010-0389-8

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Swiss National Science Foundation as part of the project no. PZ00P1-174149 “Reuniting fragments, identifying scribes and characterizing scripts: the Digital paleography of Greek and Coptic papyri (d-scribes)”. This research was supported by grants from NVIDIA and utilized NVIDIA Quadro RTX 6000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Christlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Christlein, V., Marthot-Santaniello, I., Mayr, M., Nicolaou, A., Seuret, M. (2022). Writer Retrieval and Writer Identification in Greek Papyri. In: Carmona-Duarte, C., Diaz, M., Ferrer, M.A., Morales, A. (eds) Intertwining Graphonomics with Human Movements. IGS 2022. Lecture Notes in Computer Science, vol 13424. Springer, Cham. https://doi.org/10.1007/978-3-031-19745-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19745-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19744-4

  • Online ISBN: 978-3-031-19745-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics