Skip to main content

Ensemble-Based Modeling Abstractions for Modern Self-optimizing Systems

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning (ISoLA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13703))

Included in the following conference series:

Abstract

In this paper, we extend our ensemble-based component model DEECo with the capability to use machine-learning and optimization heuristics in establishing and reconfiguration of autonomic component ensembles. We show how to capture these concepts on the model level and give an example of how such a model can be beneficially used for modeling access-control related problem in the Industry 4.0 settings. We argue that incorporating machine-learning and optimization heuristics is a key feature for modern smart systems which are to learn over the time and optimize their behavior at runtime to deal with uncertainty in their environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. jRESP: Java Runtime Environment for SCEL Programs. http://jresp.sourceforge.net/. Accessed 31 July 2022

  2. Replication package (2022). https://github.com/smartarch/ml-deeco-security-isola

  3. Al-Ali, R., et al.: Dynamic security rules for legacy systems. In: Proceedings of ECSA 2019, vol. 2, Paris, France (2019). https://doi.org/10.1145/3344948.3344974

  4. Alrahman, Y.A., De Nicola, R., Loreti, M.: Programming interactions in collective adaptive systems by relying on attribute-based communication. Sci. Comput. Programm. 192 (2020). https://doi.org/10.1016/j.scico.2020.102428

  5. Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based communication. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp. 1–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8_1

    Chapter  Google Scholar 

  6. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming of CAS systems by relying on attribute-based communication. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 539–553. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_38

    Chapter  Google Scholar 

  7. Bliudze, S., Sifakis, J.: The algebra of connectors-structuring interaction in BIP. IEEE Trans. Comput. 57(10), 1315–1330 (2008). https://doi.org/10.1109/TC.2008.26

    Article  MathSciNet  MATH  Google Scholar 

  8. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: DEECO: an ensemble-based component system. In: Proceedings of CBSE 2013, Vancouver, Canada, pp. 81–90. ACM (2013). https://doi.org/10.1145/2465449.2465462

  9. Bures, T., et al.: A language and framework for dynamic component ensembles in smart systems. Int. J. Softw. Tools Technol. Transf. 22(4), 497–509 (2020). https://doi.org/10.1007/s10009-020-00558-z

    Article  Google Scholar 

  10. Chehida, S., Baouya, A., Bensalem, S.: Component-based approach combining uml and bip for rigorous system design. In: Salaün, G., Wijs, A. (eds.) FACS 2021. LNCS, vol. 13077, pp. 27–43. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90636-8_2

    Chapter  Google Scholar 

  11. Cámara, J., Muccini, H., Vaidhyanathan, K.: Quantitative verification-aided machine learning: a tandem approach for architecting self-adaptive IoT systems. In: Proceedings of ICSA 2021, Salvador, Brazil, pp. 11–22. IEEE (2020). https://doi.org/10.1109/ICSA47634.2020.00010

  12. De Nicola, R., Duong, T., Loreti, M.: ABEL - a domain specific framework for programming with attribute-based communication. In: Proceedings of COORDINATION 2019, Lyngby, Denmark. LNCS, vol. 11533, pp. 111–128. Springer (2019). https://doi.org/10.1007/978-3-030-22397-7_7

  13. De Nicola, R., Maggi, A., Sifakis, J.: The DReAM framework for dynamic reconfigurable architecture modelling: theory and applications. Int. J. Softw. Tools Technol. Transf. 22(4), 437–455 (2020). https://doi.org/10.1007/s10009-020-00555-2

    Article  Google Scholar 

  14. El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Programming dynamic reconfigurable systems. Int. J. Softw. Tools Technol. Transf. 23(5), 701–719 (2021). https://doi.org/10.1007/s10009-020-00596-7

    Article  Google Scholar 

  15. Gabor, T., et al.: The scenario coevolution paradigm: adaptive quality assurance for adaptive systems. Int. J. Softw. Tools Technol. Transf. 22(4), 457–476 (2020). https://doi.org/10.1007/s10009-020-00560-5

    Article  Google Scholar 

  16. Gheibi, O., Weyns, D., Quin, F.: Applying machine learning in self-adaptive systems: a systematic literature review. ACM Trans. Auton. Adapt. Syst. 15(3), 9:1–9:37 (2021). https://doi.org/10.1145/3469440

  17. Gheibi, O., Weyns, D., Quin, F.: On the Impact of applying machine learning in the decision-making of self-adaptive systems. In: Proceedings of SEAMS 2021, Madrid, Spain, pp. 104–110. IEEE (2021). https://doi.org/10.1109/SEAMS51251.2021.00023

  18. Grohmann, J., et al.: SARDE: a framework for continuous and self-adaptive resource demand estimation. ACM Trans. Auton. Adapt. Syst. 15(2), 1–31 (2021). https://doi.org/10.1145/3463369

    Article  Google Scholar 

  19. Heinrich, B., Klier, M., Zimmermann, S.: Automated planning of process models: design of a novel approach to construct exclusive choices. Decis. Support Syst. 78, 1–14 (2015). https://doi.org/10.1016/j.dss.2015.07.005

    Article  Google Scholar 

  20. Hennicker, R., Klarl, A.: Foundations for ensemble modeling - the helena approach. In: Specification, Algebra, and Software, pp. 359–381. No. 8373 in LNCS, Springer (2014). https://doi.org/10.1007/978-3-642-54624-2_1

  21. Hennicker, R., Wirsing, M.: A dynamic logic for systems with predicate-based communication. In: Proceedings of ISOLA 2020, Rhodes, Greece. LNCS, vol. 12477, pp. 224–242. Springer (2020). https://doi.org/10.1007/978-3-030-61470-6_14

  22. Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002). https://doi.org/10.1109/TPAMI.2002.1017616

    Article  MATH  Google Scholar 

  23. Muccini, H., Vaidhyanathan, K.: A machine learning-driven approach for proactive decision making in adaptive architectures. In: Companion Proceedings of ICSA 2019, Hamburg, Germany, pp. 242–245 (2019). https://doi.org/10.1109/ICSA-C.2019.00050

  24. Nicola, R.D., et al.: The SCEL language: design, implementation, verification. In: Software Engineering for Collective Autonomic Systems, pp. 3–71. No. 8998 in LNCS, Springer (2015). https://doi.org/10.1007/978-3-319-16310-9_1

  25. Palm, A., Metzger, A., Pohl, K.: Online reinforcement learning for self-adaptive information systems. In: Proceedings of CAiSE 2020, Grenoble, France. LNCS, vol. 12127, pp. 169–184. Springer (2020). https://doi.org/10.1007/978-3-030-49435-3_11

  26. Saputri, T.R.D., Lee, S.W.: The application of machine learning in self-adaptive systems: a systematic literature review. IEEE Access 8, 205948–205967 (2020). https://doi.org/10.1109/ACCESS.2020.3036037

    Article  Google Scholar 

  27. Van Der Donckt, J., Weyns, D., Iftikhar, M.U., Buttar, S.S.: Effective decision making in self-adaptive systems using cost-benefit analysis at runtime and online learning of adaptation spaces. In: Evaluation of Novel Approaches to Software Engineering, LNCS, vol. 1023, pp. 373–403. Springer (2019). https://doi.org/10.1007/978-3-030-22559-9_17

  28. Van Der Donckt, J., Weyns, D., Quin, F., Van Der Donckt, J., Michiels, S.: Applying deep learning to reduce large adaptation spaces of self-adaptive systems with multiple types of goals. In: Proceedings of SEAMS 2020, Seoul, South Korea, pp. 20–30. ACM (2020). https://doi.org/10.1145/3387939.3391605

Download references

Acknowledgment

This work has been partially supported by Charles University institutional funding SVV 260588, partially supported by the Czech Science Foundation project 20-24814J, and partially supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Bureš .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Töpfer, M., Abdullah, M., Bureš, T., Hnětynka, P., Kruliš, M. (2022). Ensemble-Based Modeling Abstractions for Modern Self-optimizing Systems. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning. ISoLA 2022. Lecture Notes in Computer Science, vol 13703. Springer, Cham. https://doi.org/10.1007/978-3-031-19759-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19759-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19758-1

  • Online ISBN: 978-3-031-19759-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics