Skip to main content

An Extension of HybridSynchAADL and Its Application to Collaborating Autonomous UAVs

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning (ISoLA 2022)

Abstract

Many collective adaptive systems consist of distributed nodes that communicate with each other and with their physical environments, but that logically should operate in a synchronous way. HybridSynchAADL is a recent modeling language and formal analysis tool for such virtually synchronous cyber-physical systems (CPSs). HybridSynchAADL uses the Hybrid PALS equivalence to reduce the hard problem of designing and verifying virtually synchronous CPSs—with network delays, asynchronous communication, imprecise local clocks, continuous dynamics, etc.—to the much easier tasks of designing and verifying their underlying synchronous designs. Up to now HybridSynchAADL has lacked important programming language features, such as compound data types and user-defined functions, which made it difficult to model advanced control logics of collective adaptive systems. In this paper, we extend the HybridSynchAADL language, its formal semantics, and its analysis tool to support these programming language features. We apply our extension of HybridSynchAADL to design and analyze a collection of collaborating autonomous drones that adapt to their environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, E., Larson, B.R., Barrett, S.C., Zhan, N., Dong, Y.: Hybrid Annex: an AADL extension for continuous behavior and cyber-physical interaction modeling. In: Proceedings of the ACM SIGAda Annual Conference on High Integrity Language Technology (HILT 2014). ACM, NY (2014)

    Google Scholar 

  2. Al-Nayeem, A., Sun, M., Qiu, X., Sha, L., Miller, S.P., Cofer, D.D.: A formal architecture pattern for real-time distributed systems. In: Proceedings of the RTSS, pp. 161–170. IEEE (2009)

    Google Scholar 

  3. Arney, D., Jetley, R., Jones, P., Lee, I., Sokolsky, O.: Formal methods based development of a PCA infusion pump reference model: generic infusion pump (GIP) project. In: HCMDSS-MDPnP, pp. 23–33. IEEE (2007)

    Google Scholar 

  4. Bae, K., Krisiloff, J., Meseguer, J., Ölveczky, P.C.: Designing and verifying distributed cyber-physical systems using Multirate PALS: an airplane turning control system case study. Sci. Comput. Program. 103, 13–50 (2015)

    Article  Google Scholar 

  5. Bae, K., Meseguer, J., Ölveczky, P.C.: Formal patterns for multirate distributed real-time systems. Sci. Comput. Program. 91, 3–44 (2014)

    Article  Google Scholar 

  6. Bae, K., Ölveczky, P.C.: MSYNC: a generalized formal design pattern for virtually synchronous multirate cyber-physical systems. ACM Trans. Embedd. Comput. Syst. 20(5s), 1–26 (2021)

    Article  Google Scholar 

  7. Bae, K., Ölveczky, P.C., Al-Nayeem, A., Meseguer, J.: Synchronous AADL and its formal analysis in Real-Time Maude. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 651–667. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24559-6_43

    Chapter  Google Scholar 

  8. Bae, K., Ölveczky, P.C., Kong, S., Gao, S., Clarke, E.M.: SMT-based analysis of virtually synchronous distributed hybrid systems. In: Proceedings of the HSCC, pp. 145–154. ACM, NY (2016)

    Google Scholar 

  9. Bae, K., Ölveczky, P.C., Meseguer, J.: Definition, semantics, and analysis of multirate synchronous AADL. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 94–109. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9_7

    Chapter  Google Scholar 

  10. Bae, K., Ölveczky, P.C., Meseguer, J., Al-Nayeem, A.: The SynchAADL2Maude tool. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 59–62. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2_4

    Chapter  Google Scholar 

  11. Bae, K., Rocha, C.: Symbolic state space reduction with guarded terms for rewriting modulo SMT. Sci. Comput. Program. 178, 20–42 (2019)

    Article  Google Scholar 

  12. Bao, Y., Chen, M., Zhu, Q., Wei, T., Mallet, F., Zhou, T.: Quantitative performance evaluation of uncertainty-aware Hybrid AADL designs using statistical model checking. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 36(12), 1989–2002 (2017)

    Article  Google Scholar 

  13. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_14

    Chapter  Google Scholar 

  14. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18

    Chapter  Google Scholar 

  15. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: an SMT-based model checker for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 52–67. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_4

    Chapter  Google Scholar 

  16. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

    Book  MATH  Google Scholar 

  17. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_49

    Chapter  Google Scholar 

  18. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction to the SAE Architecture Analysis and Design Language. Addison-Wesley, USA (2012)

    Google Scholar 

  19. França, R., Bodeveix, J.P., Filali, M., Rolland, J.F., Chemouil, D., Thomas, D.: The AADL Behaviour Annex – experiments and roadmap. In: Proceedings of the ICECCS 2007. IEEE (2007)

    Google Scholar 

  20. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  21. Kim, C., Sun, M., Mohan, S., Yun, H., Sha, L., Abdelzaher, T.F.: A framework for the safe interoperability of medical devices in the presence of network failures. In: Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), pp. 149–158 (2010)

    Google Scholar 

  22. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: \(\delta \)-reachability analysis for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_15

    Chapter  Google Scholar 

  23. Kopetz, H., Bauer, G.: The time-triggered architecture. Proc. IEEE 91(1), 112–126 (2003)

    Article  Google Scholar 

  24. Lee, J., Bae, K., Ölveczky, P.C.: An extension of HybridSynchAADL and its application to collaborating autonomous UAVs (2022). http://hybridsynchaadl.github.io/artifact/isola2022/techrep.pdf

  25. Lee, J., Bae, K., Ölveczky, P.C., Kim, S., Kang, M.: Modeling and formal analysis of virtually synchronous cyber-physical systems in AADL. Int. J. Softw. Tools Technol. Transfer (2022). https://doi.org/10.1007/s10009-022-00665-z

  26. Lee, J., Kim, S., Bae, K., Ölveczky, P.C.: Hybrid SynchAADL: modeling and formal analysis of virtually synchronous CPSs in AADL. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 491–504. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8_23

    Chapter  Google Scholar 

  27. Leen, G., Heffernan, D., Dunne, A.: Digital networks in the automotive vehicle. Comput. Control Eng. J. 10(6), 257–266 (1999)

    Article  Google Scholar 

  28. Liu, J., Li, T., Ding, Z., Qian, Y., Sun, H., He, J.: AADL+: a simulation-based methodology for cyber-physical systems. Front. Comput. Sci. 13(3), 516–538 (2018). https://doi.org/10.1007/s11704-018-7039-7

    Article  Google Scholar 

  29. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci. 96(1), 73–155 (1992)

    Article  MathSciNet  Google Scholar 

  30. Meseguer, J., Ölveczky, P.C.: Formalization and correctness of the PALS architectural pattern for distributed real-time systems. Theor. Comput. Sci. 451, 1–37 (2012)

    Article  MathSciNet  Google Scholar 

  31. Qian, Y., Liu, J., Chen, X.: Hybrid AADL: a sublanguage extension to AADL. In: Proceedings of the Internetware 2013. ACM, NY (2013)

    Google Scholar 

  32. Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system analysis. J. Log. Algebr. Methods Program. 86(1), 269–297 (2017)

    Article  MathSciNet  Google Scholar 

  33. SAE International: Architecture analysis and design language (AADL) annex volume 2: Annex B: Data modeling annex (2011)

    Google Scholar 

  34. Steiner, W., Bauer, G., Hall, B., Paulitsch, M., Varadarajan, S.: TTEthernet dataflow concept. In: 2009 Eighth IEEE International Symposium on Network Computing and Applications, pp. 319–322. IEEE (2009)

    Google Scholar 

  35. Steiner, W., Rushby, J.: TTA and PALS: formally verified design patterns for distributed cyber-physical systems. In: 2011 IEEE/AIAA 30th Digital Avionics Systems Conference, pp. 7B5–1. IEEE (2011)

    Google Scholar 

  36. Talcott, C., Arbab, F., Yadav, M.: Soft agents: exploring soft constraints to model robust adaptive distributed cyber-physical agent systems. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 273–290. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15545-6_18

    Chapter  MATH  Google Scholar 

Download references

Acknowledgments

We thank the organizers of the Rigorous Engineering of Collective Adaptive Systems track for inviting us to present this work at ISOLA 2022, and the reviewers for helpful comments. This work was partly supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (No. 2021R1A5A1021944 and No. 2022R1F1A1074550).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungmin Bae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, J., Bae, K., Ölveczky, P.C. (2022). An Extension of HybridSynchAADL and Its Application to Collaborating Autonomous UAVs. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning. ISoLA 2022. Lecture Notes in Computer Science, vol 13703. Springer, Cham. https://doi.org/10.1007/978-3-031-19759-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19759-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19758-1

  • Online ISBN: 978-3-031-19759-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics