Skip to main content

Learning to Train a Point Cloud Reconstruction Network Without Matching

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13661))

Included in the following conference series:

Abstract

Reconstruction networks for well-ordered data such as 2D images and 1D continuous signals are easy to optimize through element-wised squared errors, while permutation-arbitrary point clouds cannot be constrained directly because their points permutations are not fixed. Though existing works design algorithms to match two point clouds and evaluate shape errors based on matched results, they are limited by pre-defined matching processes. In this work, we propose a novel framework named PCLossNet which learns to train a point cloud reconstruction network without any matching. By training through an adversarial process together with the reconstruction network, PCLossNet can better explore the differences between point clouds and create more precise reconstruction results. Experiments on multiple datasets prove the superiority of our method, where PCLossNet can help networks achieve much lower reconstruction errors and extract more representative features, with about 4 times faster training efficiency than the commonly-used EMD loss. Our codes can be found in https://github.com/Tianxinhuang/PCLossNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. In: International Conference on Machine Learning, pp. 40–49. PMLR (2018)

    Google Scholar 

  2. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5297–5307 (2016)

    Google Scholar 

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)

  4. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017)

    Google Scholar 

  5. Gadelha, M., Wang, R., Maji, S.: Multiresolution tree networks for 3D point cloud processing. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 103–118 (2018)

    Google Scholar 

  6. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv preprint arXiv:1406.2661 (2014)

  7. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)

    Google Scholar 

  8. Han, Z., Wang, X., Liu, Y.S., Zwicker, M.: Multi-angle point cloud-VAE: unsupervised feature learning for 3D point clouds from multiple angles by joint self-reconstruction and half-to-half prediction. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10441–10450. IEEE (2019)

    Google Scholar 

  9. Huang, T., Liu, Y.: 3D point cloud geometry compression on deep learning. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 890–898 (2019)

    Google Scholar 

  10. Huang, T., et al.: RFNet: recurrent forward network for dense point cloud completion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12508–12517 (2021)

    Google Scholar 

  11. Huang, Z., Yu, Y., Xu, J., Ni, F., Le, X.: PF-net: point fractal network for 3D point cloud completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7662–7670 (2020)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Li, R., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: PU-GAN: a point cloud upsampling adversarial network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7203–7212 (2019)

    Google Scholar 

  14. Liu, M., Sheng, L., Yang, S., Shao, J., Hu, S.M.: Morphing and sampling network for dense point cloud completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11596–11603 (2020)

    Google Scholar 

  15. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)

    Google Scholar 

  16. Nguyen, T., Pham, Q.H., Le, T., Pham, T., Ho, N., Hua, B.S.: Point-set distances for learning representations of 3D point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10478–10487 (2021)

    Google Scholar 

  17. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  18. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)

    Google Scholar 

  19. Rao, Y., Lu, J., Zhou, J.: Global-local bidirectional reasoning for unsupervised representation learning of 3D point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5376–5385 (2020)

    Google Scholar 

  20. Urbach, D., Ben-Shabat, Y., Lindenbaum, M.: DPDist: comparing point clouds using deep point cloud distance. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 545–560. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_32

    Chapter  Google Scholar 

  21. Wang, H., Jiang, Z., Yi, L., Mo, K., Su, H., Guibas, L.J.: Rethinking sampling in 3D point cloud generative adversarial networks. arXiv preprint arXiv:2006.07029 (2020)

  22. Wang, X., Ang Jr, M.H., Lee, G.H.: Cascaded refinement network for point cloud completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 790–799 (2020)

    Google Scholar 

  23. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. Acm Trans. Graph. (tog) 38(5), 1–12 (2019)

    Article  Google Scholar 

  24. Wu, C.H., et al.: PCC arena: a benchmark platform for point cloud compression algorithms. In: Proceedings of the 12th ACM International Workshop on Immersive Mixed and Virtual Environment Systems, pp. 1–6 (2020)

    Google Scholar 

  25. Wu, T., Pan, L., Zhang, J., Wang, T., Liu, Z., Lin, D.: Density-aware chamfer distance as a comprehensive metric for point cloud completion. arXiv preprint arXiv:2111.12702 (2021)

  26. Wu, Z., et al.: 3D shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  27. Yang, Y., Feng, C., Shen, Y., Tian, D.: FoldingNet: point cloud auto-encoder via deep grid deformation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 206–215 (2018)

    Google Scholar 

  28. Yi, L., et al.: A scalable active framework for region annotation in 3d shape collections. ACM Trans. Graph. (ToG) 35(6), 1–12 (2016)

    Article  Google Scholar 

  29. Yu, L., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: PU-net: point cloud upsampling network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2790–2799 (2018)

    Google Scholar 

  30. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: PCN: point completion network. In: 2018 International Conference on 3D Vision (3DV), pp. 728–737. IEEE (2018)

    Google Scholar 

  31. Zhao, Y., Birdal, T., Deng, H., Tombari, F.: 3D point capsule networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1009–1018 (2019)

    Google Scholar 

Download references

Acknowledgement

We thank all authors, reviewers and the chair for the excellent contributions. This work is supported by the National Science Foundation 62088101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9569 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, T. et al. (2022). Learning to Train a Point Cloud Reconstruction Network Without Matching. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13661. Springer, Cham. https://doi.org/10.1007/978-3-031-19769-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19769-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19768-0

  • Online ISBN: 978-3-031-19769-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics