Abstract
In this paper, we formulate a potentially valuable panoramic depth completion (PDC) task as panoramic 3D cameras often produce 360\(^\circ \) depth with missing data in complex scenes. Its goal is to recover dense panoramic depths from raw sparse ones and panoramic RGB images. To deal with the PDC task, we train a deep network that takes both depth and image as inputs for the dense panoramic depth recovery. However, it needs to face a challenging optimization problem of the network parameters due to its non-convex objective function. To address this problem, we propose a simple yet effective approach termed M\(^{3}\)PT: multi-modal masked pre-training. Specifically, during pre-training, we simultaneously cover up patches of the panoramic RGB image and sparse depth by shared random mask, then reconstruct the sparse depth in the masked regions. To our best knowledge, it is the first time that we show the effectiveness of masked pre-training in a multi-modal vision task, instead of the single-modal task resolved by masked autoencoders (MAE). Different from MAE where fine-tuning completely discards the decoder part of pre-training, there is no architectural difference between the pre-training and fine-tuning stages in our M\(^{3}\)PT as they only differ in the prediction density, which potentially makes the transfer learning more convenient and effective. Extensive experiments verify the effectiveness of M\(^{3}\)PT on three panoramic datasets. Notably, we improve the state-of-the-art baselines by averagely 29.2% in RMSE, 51.7% in MRE, 49.7% in MAE, and 37.5% in RMSElog on three benchmark datasets.
Z. Yan and X. Li—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albanis, G., et al.: Pano3d: A holistic benchmark and a solid baseline for 360\(^{\circ }\) depth estimation. In: CVPRW, pp. 3722–3732. IEEE (2021)
Armeni, I., Sax, S., Zamir, A.R., Savarese, S.: Joint 2D–3D-semantic data for indoor scene understanding. arXiv preprint arXiv:1702.01105 (2017)
Bai, J., Lai, S., Qin, H., Guo, J., Guo, Y.: Glpanodepth: global-to-local panoramic depth estimation. arXiv preprint arXiv:2202.02796 (2022)
Bao, H., Dong, L., Wei, F.: Beit: Bert pre-training of image transformers. arXiv preprint arXiv:2106.08254 (2021)
Chang, A., et al.: Matterport3d: Learning from RGB-D data in indoor environments. In: 3DV (2017)
Chao, P., Kao, C.Y., Ruan, Y.S., Huang, C.H., Lin, Y.L.: Hardnet: a low memory traffic network. In: ICCV. pp. 3552–3561 (2019)
Chen, M., et al.: Generative pretraining from pixels. In: ICML, pp. 1691–1703. PMLR (2020)
Cheng, X., Wang, P., Guan, C., Yang, R.: Cspn++: learning context and resource aware convolutional spatial propagation networks for depth completion. In: AAAI, pp. 10615–10622 (2020)
Cheng, X., Wang, P., Yang, R.: Learning depth with convolutional spatial propagation network. In: ECCV, pp. 103–119 (2018)
Chodosh, N., Wang, C., Lucey, S.: Deep convolutional compressed sensing for LiDAR depth completion. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11361, pp. 499–513. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20887-5_31
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)
Eder, M., Moulon, P., Guan, L.: Pano popups: indoor 3D reconstruction with a plane-aware network. In: 3DV, pp. 76–84. IEEE (2019)
Eldesokey, A., Felsberg, M., Khan, F.S.: Confidence propagation through CNNs for guided sparse depth regression. IEEE Trans. Pattern Anal. Mach. Intell. 42(10), 2423–2436 (2019)
Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)
Feng, B.Y., Yao, W., Liu, Z., Varshney, A.: Deep depth estimation on 360 images with a double quaternion loss. In: 3DV, pp. 524–533. IEEE (2020)
Feng, Q., Shum, H.P., Morishima, S.: 360 depth estimation in the wild-the depth360 dataset and the segfuse network. In: VR. IEEE (2022)
Gordon, A., Li, H., Jonschkowski, R., Angelova, A.: Depth from videos in the wild: Unsupervised monocular depth learning from unknown cameras. In: ICCV. pp. 8977–8986 (2019)
Gu, J., Xiang, Z., Ye, Y., Wang, L.: Denselidar: a real-time pseudo dense depth guided depth completion network. IEEE Robot. Autom. Lett. 6(2), 1808–1815 (2021)
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377 (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Hu, M., Wang, S., Li, B., Ning, S., Fan, L., Gong, X.: PENet: towards precise and efficient image guided depth completion. In: ICRA (2021)
Jaritz, M., De Charette, R., Wirbel, E., Perrotton, X., Nashashibi, F.: Sparse and dense data with CNNs: Depth completion and semantic segmentation. In: 3DV, pp. 52–60 (2018)
Jiang, H., Sheng, Z., Zhu, S., Dong, Z., Huang, R.: Unifuse: unidirectional fusion for 360 panorama depth estimation. IEEE Robot. Autom. Lett. 6(2), 1519–1526 (2021)
Jin, L., : Geometric structure based and regularized depth estimation from 360 indoor imagery. In: CVPR, pp. 889–898 (2020)
Krauss, B., Schroeder, G., Gustke, M., Hussein, A.: Deterministic guided lidar depth map completion. arXiv preprint arXiv:2106.07256 (2021)
Lai, Z., Chen, D., Su, K.: Olanet: self-supervised 360\(^{\circ }\) depth estimation with effective distortion-aware view synthesis and l1 smooth regularization. In: ICME, pp. 1–6. IEEE (2021)
Lee, Y., Jeong, J., Yun, J., Cho, W., Yoon, K.J.: SpherePHD: applying CNNs on a spherical polyhedron representation of 360deg images. In: CVPR, pp. 9181–9189 (2019)
Lee, Y., Jeong, J., Yun, J., Cho, W., Yoon, K.J.: SpherePHD: applying CNNs on 360\(^{\circ }\) images with non-euclidean spherical polyhedron representation. IEEE Trans. Pattern Anal. Mach. Intell. (2020)
Li, A., Yuan, Z., Ling, Y., Chi, W., Zhang, C., et al.: A multi-scale guided cascade hourglass network for depth completion. In: WACV, pp. 32–40 (2020)
Li, J., Zhang, T., Luo, W., Yang, J., Yuan, X.T., Zhang, J.: Sparseness analysis in the pretraining of deep neural networks. IEEE Trans. Neural Networks Learn. Syst. 28(6), 1425–1438 (2016)
Li, Y., Yan, Z., Duan, Y., Ren, L.: Panodepth: a two-stage approach for monocular omnidirectional depth estimation. In: 3DV, pp. 648–658. IEEE (2021)
Lin, Y., Cheng, T., Zhong, Q., Zhou, W., Yang, H.: Dynamic spatial propagation network for depth completion. In: AAAI (2022)
Liu, L., et al.: FCFR-net: feature fusion based coarse-to-fine residual learning for depth completion. In: AAAI, vol. 35, pp. 2136–2144 (2021)
Lu, K., Barnes, N., Anwar, S., Zheng, L.: From depth what can you see? Depth completion via auxiliary image reconstruction. In: CVPR, pp. 11306–11315 (2020)
Ma, F., Cavalheiro, G.V., Karaman, S.: Self-supervised sparse-to-dense: self-supervised depth completion from lidar and monocular camera. In: ICRA (2019)
Park, J., Joo, K., Hu, Z., Liu, C.-K., So Kweon, I.: Non-local spatial propagation network for depth completion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 120–136. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_8
Pintore, G., Agus, M., Almansa, E., Schneider, J., Gobbetti, E.: Slicenet: deep dense depth estimation from a single indoor panorama using a slice-based representation. In: CVPR, pp. 11536–11545 (2021)
Qiu, J., et al.: DeepLiDAR: deep surface normal guided depth prediction for outdoor scene from sparse lidar data and single color image. In: CVPR, pp. 3313–3322 (2019)
Rey-Area, M., Yuan, M., Richardt, C.: 360monodepth: high-resolution 360\(^{\circ }\) monocular depth estimation. arXiv e-prints pp. arXiv-2111 (2021)
Schuster, R., Wasenmuller, O., Unger, C., Stricker, D.: SSGP: sparse spatial guided propagation for robust and generic interpolation. In: WACV, pp. 197–206 (2021)
Shen, Z., Lin, C., Liao, K., Nie, L., Zheng, Z., Zhao, Y.: Panoformer: panorama transformer for indoor 360 depth estimation. arXiv e-prints pp. arXiv-2203 (2022)
Shen, Z., Lin, C., Nie, L., Liao, K., Zhao, Y.: Distortion-tolerant monocular depth estimation on omnidirectional images using dual-cubemap. In: ICME, pp. 1–6. IEEE (2021)
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54
Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene completion from a single depth image. In: CVPR, pp. 1746–1754 (2017)
Sun, C., Hsiao, C.W., Wang, N.H., Sun, M., Chen, H.T.: Indoor panorama planar 3D reconstruction via divide and conquer. In: CVPR, pp. 11338–11347 (2021)
Sun, C., Sun, M., Chen, H.T.: Hohonet: 360 indoor holistic understanding with latent horizontal features. In: CVPR, pp. 2573–2582 (2021)
Tang, J., Tian, F.P., Feng, W., Li, J., Tan, P.: Learning guided convolutional network for depth completion. IEEE Trans. Image Process. 30, 1116–1129 (2020)
Tateno, K., Navab, N., Tombari, F.: Distortion-aware convolutional filters for dense prediction in panoramic images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 732–750. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_43
Teutscher, D., Mangat, P., Wasenmüller, O.: PDC: piecewise depth completion utilizing superpixels. In: ITSC, pp. 2752–2758. IEEE (2021)
Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity invariant CNNs. In: 3DV, pp. 11–20 (2017)
Van Gansbeke, W., Neven, D., De Brabandere, B., Van Gool, L.: Sparse and noisy lidar completion with RGB guidance and uncertainty. In: MVA, pp. 1–6 (2019)
Vaswani, A., et al.: Attention is all you need. In: NeurlPS, vol. 30 (2017)
Wang, F.E., Yeh, Y.H., Sun, M., Chiu, W.C., Tsai, Y.H.: Bifuse: monocular 360 depth estimation via bi-projection fusion. In: CVPR, pp. 462–471 (2020)
Wong, A., Cicek, S., Soatto, S.: Learning topology from synthetic data for unsupervised depth completion. IEEE Robo. Autom. Lett. 6(2), 1495–1502 (2021)
Wong, A., Fei, X., Hong, B.W., Soatto, S.: An adaptive framework for learning unsupervised depth completion. IEEE Robot. Autom. Lett. 6(2), 3120–3127 (2021)
Wong, A., Fei, X., Tsuei, S., Soatto, S.: Unsupervised depth completion from visual inertial odometry. IEEE Robot. Autom. Lett. 5(2), 1899–1906 (2020)
Wong, A., Soatto, S.: Unsupervised depth completion with calibrated backprojection layers. In: ICCV (2021)
Xie, Z., et al.: SimMIM: a simple framework for masked image modeling. arXiv preprint arXiv:2111.09886 (2021)
Xu, Y., Zhu, X., Shi, J., Zhang, G., Bao, H., Li, H.: Depth completion from sparse lidar data with depth-normal constraints. In: ICCV, pp. 2811–2820 (2019)
Xu, Z., Yin, H., Yao, J.: Deformable spatial propagation networks for depth completion. In: ICIP, pp. 913–917. IEEE (2020)
Yan, L., Liu, K., Gao, L.: Dan-conv: depth aware non-local convolution for lidar depth completion. Electron. Lett. 57(20), 754–757 (2021)
Yan, Z., et al.: Rignet: repetitive image guided network for depth completion. arXiv preprint arXiv:2107.13802 (2021)
Yun, I., Lee, H.J., Rhee, C.E.: Improving 360 monocular depth estimation via non-local dense prediction transformer and joint supervised and self-supervised learning. arXiv preprint arXiv:2109.10563 (2021)
Zhao, S., Gong, M., Fu, H., Tao, D.: Adaptive context-aware multi-modal network for depth completion. IEEE Trans. Image Process. 30, 5264–5276 (2021)
Zhou, K., Yang, K., Wang, K.: Panoramic depth estimation via supervised and unsupervised learning in indoor scenes. Appl. Opt. 60(26), 8188–8197 (2021)
Zhu, Y., Dong, W., Li, L., Wu, J., Li, X., Shi, G.: Robust depth completion with uncertainty-driven loss functions. arXiv preprint arXiv:2112.07895 (2021)
Zhuang, C., Lu, Z., Wang, Y., Xiao, J., Wang, Y.: ACDNet: adaptively combined dilated convolution for monocular panorama depth estimation. In: AAAI (2022)
Zioulis, N., Karakottas, A., Zarpalas, D., Alvarez, F., Daras, P.: Spherical view synthesis for self-supervised 360 depth estimation. In: 3DV, pp. 690–699. IEEE (2019)
Zioulis, N., Karakottas, A., Zarpalas, D., Daras, P.: OmniDepth: dense depth estimation for indoors spherical panoramas. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 453–471. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_28
Acknowledgement
The authors would like to thank reviewers for their detailed comments and instructive suggestions. This work was supported by the National Science Fund of China under Grant Nos. U1713208, 62072242 and Postdoctoral Innovative Talent Support Program of China under Grant BX20200168, 2020M681608. Note that the PCA Lab is associated with, Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, and Jiangsu Key Lab of Image and Video Understanding for Social Security, Nanjing University of Science and Technology.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yan, Z., Li, X., Wang, K., Zhang, Z., Li, J., Yang, J. (2022). Multi-modal Masked Pre-training for Monocular Panoramic Depth Completion. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13661. Springer, Cham. https://doi.org/10.1007/978-3-031-19769-7_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-19769-7_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19768-0
Online ISBN: 978-3-031-19769-7
eBook Packages: Computer ScienceComputer Science (R0)