Skip to main content

CompNVS: Novel View Synthesis with Scene Completion

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13661))

Included in the following conference series:

Abstract

We introduce a scalable framework for novel view synthesis from RGB-D images with largely incomplete scene coverage. While generative neural approaches have demonstrated spectacular results on 2D images, they have not yet achieved similar photorealistic results in combination with scene completion where a spatial 3D scene understanding is essential. To this end, we propose a generative pipeline performing on a sparse grid-based neural scene representation to complete unobserved scene parts via a learned distribution of scenes in a 2.5D-3D-2.5D manner. We process encoded image features in 3D space with a geometry completion network and a subsequent texture inpainting network to extrapolate the missing area. Photorealistic image sequences can be finally obtained via consistency-relevant differentiable rendering. Comprehensive experiments show that the graphical outputs of our method outperform the state of the art, especially within unobserved scene parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baruch, G., et al.: ARKitscenes - a diverse real-world dataset for 3D indoor scene understanding using mobile RGB-d data. In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1) (2021)

    Google Scholar 

  2. Chan, E., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-GAN: periodic implicit generative adversarial networks for 3D-aware image synthesis. In: arXiv (2020)

    Google Scholar 

  3. Choy, C., Gwak, J., Savarese, S.: 4D spatio-temporal convnets: Minkowski convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3075–3084 (2019)

    Google Scholar 

  4. Dai, A., Siddiqui, Y., Thies, J., Valentin, J., Nießner, M.: SPSG: self-supervised photometric scene generation from RGB-D scans. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR). IEEE (2021)

    Google Scholar 

  5. DeVries, T., Bautista, M.A., Srivastava, N., Taylor, G.W., Susskind, J.M.: Unconstrained scene generation with locally conditioned radiance fields. ICCV (2021)

    Google Scholar 

  6. Gwak, J.Y., Choy, C., Savarese, S.: Generative sparse detection networks for 3D single-shot object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 297–313. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_18

    Chapter  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  8. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  9. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  10. Li, Z., Li, Z., Cui, Z., Qin, R., Pollefeys, M., Oswald, M.R.: Sat2Vid: street-view panoramic video synthesis from a single satellite image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12436–12445, October 2021

    Google Scholar 

  11. Liu, L., Gu, J., Lin, K.Z., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. NeurIPS (2020)

    Google Scholar 

  12. Mallya, A., Wang, T.-C., Sapra, K., Liu, M.-Y.: World-consistent video-to-video synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 359–378. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_22

    Chapter  Google Scholar 

  13. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: The European Conference on Computer Vision (ECCV) (2020)

    Google Scholar 

  14. Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., Yang, Y.L.: HoloGAN: unsupervised learning of 3D representations from natural images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  15. Nguyen-Phuoc, T., Richardt, C., Mai, L., Yang, Y.L., Mitra, N.: BlockGAN: learning 3D object-aware scene representations from unlabelled images. In: Advances in Neural Information Processing Systems, vol. 33, November 2020

    Google Scholar 

  16. Niemeyer, M., Geiger, A.: Giraffe: representing scenes as compositional generative neural feature fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  17. Rockwell, C., Fouhey, D.F., Johnson, J.: PixelSynth: generating a 3D-consistent experience from a single image. In: ICCV (2021)

    Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Savva, M., et al.: Habitat: a platform for embodied AI research. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  20. Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: GRAF: generative radiance fields for 3D-aware image synthesis. In: Advances in Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  21. Sitzmann, V., Martel, J.N., Bergman, A.W., Lindell, D.B., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: Advances in Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  22. Straub, J., et al.: The Replica dataset: A digital replica of indoor spaces. arXiv preprint arXiv:1906.05797 (2019)

  23. Szot, A., et al.: Habitat 2.0: training home assistants to rearrange their habitat. In: Advances in Neural Information Processing Systems (NeurIPS) (2021)

    Google Scholar 

  24. Wiles, O., Gkioxari, G., Szeliski, R., Johnson, J.: SynSin: end-to-end view synthesis from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  25. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: neural radiance fields from one or few images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4578–4587, June 2021

    Google Scholar 

  26. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. arXiv preprint arXiv:1806.03589 (2018)

  27. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. arXiv preprint arXiv:1801.07892 (2018)

  28. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS Postdoctoral Fellowships for Research in Japan (Strategic Program) and JSPS KAKENHI Grant Number JP20H04205. Z. Li was supported by the Swiss Data Science Center Fellowship program. Z. Cui was affiliated with the State Key Lab of CAD & CG, Zhejiang University. M. R. Oswald was supported by a FIFA research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuoyue Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z. et al. (2022). CompNVS: Novel View Synthesis with Scene Completion. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13661. Springer, Cham. https://doi.org/10.1007/978-3-031-19769-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19769-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19768-0

  • Online ISBN: 978-3-031-19769-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics