Abstract
Visual re-localization aims to recover camera poses in a known environment, which is vital for applications like robotics or augmented reality. Feed-forward absolute camera pose regression methods directly output poses by a network, but suffer from low accuracy. Meanwhile, scene coordinate based methods are accurate, but need iterative RANSAC post-processing, which brings challenges to efficient end-to-end training and inference. In order to have the best of both worlds, we propose a feed-forward method termed SC-wLS that exploits all scene coordinate estimates for weighted least squares pose regression. This differentiable formulation exploits a weight network imposed on 2D-3D correspondences, and requires pose supervision only. Qualitative results demonstrate the interpretability of learned weights. Evaluations on 7Scenes and Cambridge datasets show significantly promoted performance when compared with former feed-forward counterparts. Moreover, our SC-wLS method enables a new capability: self-supervised test-time adaptation on the weight network. Codes and models are publicly available.
X. Wu and H. Zhao—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5297–5307 (2016)
Brachmann, E., Humenberger, M., Rother, C., Sattler, T.: On the limits of pseudo ground truth in visual camera re-localisation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6218–6228 (2021)
Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton, J., Rother, C.: Learning 6D object pose estimation using 3D object coordinates. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 536–551. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_35
Brachmann, E., et al.: DSAC-differentiable RANSAC for camera localization. In: CVPR (2017)
Brachmann, E., Rother, C.: Learning less is more - 6D camera localization via 3D surface regression. In: CVPR (2018)
Brachmann, E., Rother, C.: Neural-guided RANSAC: learning where to sample model hypotheses. In: ICCV (2019)
Brachmann, E., Rother, C.: Visual camera re-localization from RGB and RGB-D images using DSAC. IEEE Trans. Pattern Anal. Mach. Intell. (2021)
Brahmbhatt, S., Gu, J., Kim, K., Hays, J., Kautz, J.: Geometry-aware learning of maps for camera localization. In: CVPR (2018)
Cai, M., Shen, C., Reid, I.: A hybrid probabilistic model for camera relocalization (2019)
Cao, S., Snavely, N.: Graph-based discriminative learning for location recognition. In: IJCV (2015)
Choi, S., Kim, T., Yu, W.: Performance evaluation of RANSAC family. J. Comput. Vision 24(3), 271–300 (1997)
Dang, Z., Yi, K.M., Hu, Y., Wang, F., Fua, P., Salzmann, M.: Eigendecomposition-free training of deep networks for linear least-square problems. TPAMI (2020)
Ding, M., Wang, Z., Sun, J., Shi, J., Luo, P.: CamNet: coarse-to-fine retrieval for camera re-localization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2871–2880 (2019)
Gould, S., Hartley, R., Campbell, D.J.: Deep declarative networks. TPAMI (2021)
Hartley, R., Zisserman, A.: Multiple view geometry in computer vision: N-view geometry (2004)
Hays, J., Efros, A.A.: IM2GPS: estimating geographic information from a single image. In: CVPR (2008)
Hedau, V., Hoiem, D., Forsyth, D.: Recovering the spatial layout of cluttered rooms. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1849–1856. IEEE (2009)
Hirzer, M., Lepetit, V., Roth, P.: Smart hypothesis generation for efficient and robust room layout estimation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2912–2920 (2020)
Huang, Z., Xu, Y., Shi, J., Zhou, X., Bao, H., Zhang, G.: Prior guided dropout for robust visual localization in dynamic environments. In: ICCV (2019)
Ionescu, C., Vantzos, O., Sminchisescu, C.: Matrix backpropagation for deep networks with structured layers. In: ICCV (2015)
Kendall, A., Cipolla, R.: Geometric loss functions for camera pose regression with deep learning. In: CVPR (2017)
Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DOF camera relocalization. In: ICCV (2015)
Lepetit, V., Fua, P., et al.: Monocular model-based 3D tracking of rigid objects: a survey. Found. Trends® Comput. Graph. Vision 1(1), 1–89 (2005)
Li, S., Xu, C., Xie, M.: A robust o (n) solution to the perspective-n-point problem. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1444–1450 (2012)
Li, S., Wu, X., Cao, Y., Zha, H.: Generalizing to the open world: deep visual odometry with online adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13184–13193 (2021)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV (2004)
Mair, E., Strobl, K.H., Suppa, M., Burschka, D.: Efficient camera-based pose estimation for real-time applications. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2696–2703. IEEE (2009)
Meng, L., Tung, F., Little, J.J., Valentin, J., de Silva, C.W.: Exploiting points and lines in regression forests for RGB-D camera relocalization. In: IROS (2018)
Naseer, T., Burgard, W.: Deep regression for monocular camera-based 6-DOF global localization in outdoor environments. In: IROS (2017)
Ranftl, R., Koltun, V.: Deep fundamental matrix estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 292–309. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_18
Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: learning feature matching with graph neural networks. In: CVPR (2020)
Sattler, T., Leibe, B., Kobbelt, L.: Efficient & effective prioritized matching for large-scale image-based localization. TPAMI (2016)
Sattler, T., Zhou, Q., Pollefeys, M., Leal-Taixe, L.: Understanding the limitations of CNN-based absolute camera pose regression. In: CVPR (2019)
Schindler, G., Brown, M., Szeliski, R.: City-scale location recognition. In: CVPR (2007)
Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)
Schönemann, P.H.: A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1), 1–10 (1966)
Shavit, Y., Ferens, R., Keller, Y.: Learning multi-scene absolute pose regression with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2733–2742 (2021)
Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.: Scene coordinate regression forests for camera relocalization in RGB-D images. In: CVPR (2013)
Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: ICCV (2003)
Valentin, J., Nießner, M., Shotton, J., Fitzgibbon, A., Izadi, S., Torr, P.H.: Exploiting uncertainty in regression forests for accurate camera relocalization. In: CVPR (2015)
Vaswani, A., et al.: Attention is all you need (2017)
Walch, F., Hazirbas, C., Leal-Taixe, L., Sattler, T., Hilsenbeck, S., Cremers, D.: Image-based localization using LSTMs for structured feature correlation. In: ICCV (2017)
Wang, B., Chen, C., Lu, C.X., Zhao, P., Trigoni, N., Markham, A.: Atloc: attention guided camera localization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10393–10401 (2020)
Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized object coordinate space for category-level 6d object pose and size estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2642–2651 (2019)
Wang, X., Wang, X., Wang, C., Bai, X., Wu, J., Hancock, E.R.: Discriminative features matter: multi-layer bilinear pooling for camera localization. In: BMVC (2019)
Wu, C.: Towards linear-time incremental structure from motion. In: 3DV (2013)
Wu, J., Ma, L., Hu, X.: Delving deeper into convolutional neural networks for camera relocalization. In: ICRA (2017)
Xue, F., Wang, X., Yan, Z., Wang, Q., Wang, J., Zha, H.: Local supports global: deep camera relocalization with sequence enhancement. In: ICCV (2019)
Xue, F., Wu, X., Cai, S., Wang, J.: Learning multi-view camera relocalization with graph neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11372–11381. IEEE (2020)
Yan, C., Shao, B., Zhao, H., Ning, R., Zhang, Y., Xu, F.: 3D room layout estimation from a single RGB image. IEEE Trans. Multimedia 22(11), 3014–3024 (2020)
Yi, K., Trulls, E., Ono, Y., Lepetit, V., Salzmann, M., Fua, P.: Learning to find good correspondences. In: CVPR (2018)
Zhang, J., et al.: Learning two-view correspondences and geometry using order-aware network. In: ICCV (2019)
Zhang, W., Kosecka, J.: Image based localization in urban environments. In: 3DPTV (2006)
Zhao, H., Lu, M., Yao, A., Guo, Y., Chen, Y., Zhang, L.: Physics inspired optimization on semantic transfer features: an alternative method for room layout estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10–18 (2017)
Zhong, L., et al.: Seeing through the occluders: robust monocular 6-DOF object pose tracking via model-guided video object segmentation. IEEE Robot. Autom. Lett. 5(4), 5159–5166 (2020)
Zhou, L., et al.: KfNet: learning temporal camera relocalization using Kalman filtering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4919–4928 (2020)
Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: CVPR (2017)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861
Acknowledgement
This work was supported by the National Natural Science Foundation of China under Grant 62176010.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, X., Zhao, H., Li, S., Cao, Y., Zha, H. (2022). SC-wLS: Towards Interpretable Feed-forward Camera Re-localization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13661. Springer, Cham. https://doi.org/10.1007/978-3-031-19769-7_34
Download citation
DOI: https://doi.org/10.1007/978-3-031-19769-7_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19768-0
Online ISBN: 978-3-031-19769-7
eBook Packages: Computer ScienceComputer Science (R0)