Abstract
Self-supervised monocular depth estimation has received much attention recently in computer vision. Most of the existing works in literature aggregate multi-scale features for depth prediction via either straightforward concatenation or element-wise addition, however, such feature aggregation operations generally neglect the contextual consistency between multi-scale features. Addressing this problem, we propose the Self-Distilled Feature Aggregation (SDFA) module for simultaneously aggregating a pair of low-scale and high-scale features and maintaining their contextual consistency. The SDFA employs three branches to learn three feature offset maps respectively: one offset map for refining the input low-scale feature and the other two for refining the input high-scale feature under a designed self-distillation manner. Then, we propose an SDFA-based network for self-supervised monocular depth estimation, and design a self-distilled training strategy to train the proposed network with the SDFA module. Experimental results on the KITTI dataset demonstrate that the proposed method outperforms the comparative state-of-the-art methods in most cases. The code is available at https://github.com/ZM-Zhou/SDFA-Net_pytorch.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cardace, A., Ramirez, P.Z., Salti, S., Di Stefano, L.: Shallow features guide unsupervised domain adaptation for semantic segmentation at class boundaries. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1160–1170 (2022)
Chen, Y., Schmid, C., Sminchisescu, C.: Self-supervised learning with geometric constraints in monocular video: connecting flow, depth, and camera. In: ICCV, pp. 7063–7072 (2019)
Chen, Z., et al.: Revealing the reciprocal relations between self-supervised stereo and monocular depth estimation. In: ICCV, pp. 15529–15538 (2021)
Cheng, B., Saggu, I.S., Shah, R., Bansal, G., Bharadia, D.: \(S^3\)Net: semantic-aware self-supervised depth estimation with monocular videos and synthetic data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 52–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_4
Cheng, Z., Zhang, Y., Tang, C.: Swin-depth: using transformers and multi-scale fusion for monocular-based depth estimation. IEEE Sens. J. 21(23), 26912–26920 (2021)
Choi, H., et al.: Adaptive confidence thresholding for monocular depth estimation. In: ICCV, pp. 12808–12818 (2021)
Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289 (2015)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR, pp. 3213–3223 (2016)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)
Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems, pp. 2366–2374 (2014)
Garg, R., B.G., V.K., Carneiro, G., Reid, I.: Unsupervised CNN for single view depth estimation: geometry to the rescue. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 740–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_45
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR, pp. 3354–3361 (2012)
Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: CVPR, pp. 270–279 (2017)
Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: ICCV, pp. 3828–3838 (2019)
GonzalezBello, J.L., Kim, M.: Forget about the lidar: self-supervised depth estimators with med probability volumes. Adv. Neural. Inf. Process. Syst. 33, 12626–12637 (2020)
GonzalezBello, J.L., Kim, M.: PLADE-Net: towards pixel-level accuracy for self-supervised single-view depth estimation with neural positional encoding and distilled matting loss. In: CVPR, pp. 6851–6860 (2021)
GonzalezBello, J.L., Kim, M.: Self-supervised deep monocular depth estimation with ambiguity boosting. IEEE TPAMI (2021)
Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. IJCV 129(6), 1789–1819 (2021)
Guizilini, V., Ambrus, R., Pillai, S., Raventos, A., Gaidon, A.: 3d packing for self-supervised monocular depth estimation. In: CVPR, pp. 2485–2494 (2020)
Guizilini, V., Hou, R., Li, J., Ambrus, R., Gaidon, A.: Semantically-guided representation learning for self-supervised monocular depth. In: International Conference on Learning Representations (ICLR) (2020)
Guo, X., Li, H., Yi, S., Ren, J., Wang, X.: Learning monocular depth by distilling cross-domain stereo networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 506–523. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_30
Hirschmuller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: CVPR, vol. 2, pp. 807–814. IEEE (2005)
Huang, S., Lu, Z., Cheng, R., He, C.: FaPN: feature-aligned pyramid network for dense image prediction. In: ICCV, pp. 864–873 (2021)
Huang, Z., Wei, Y., Wang, X., Liu, W., Huang, T.S., Shi, H.: AlignSeg: feature-aligned segmentation networks. IEEE TPAMI 44(1), 550–557 (2021)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)
Ji, P., Li, R., Bhanu, B., Xu, Y.: MonoIndoor: towards good practice of self-supervised monocular depth estimation for indoor environments. In: ICCV, pp. 12787–12796 (2021)
Jiao, Y., Tran, T.D., Shi, G.: EffiScene: efficient per-pixel rigidity inference for unsupervised joint learning of optical flow, depth, camera pose and motion segmentation. In: CVPR, pp. 5538–5547 (2021)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Johnston, A., Carneiro, G.: Self-supervised monocular trained depth estimation using self-attention and discrete disparity volume. In: CVPR, pp. 4756–4765 (2020)
Jung, H., Park, E., Yoo, S.: Fine-grained semantics-aware representation enhancement for self-supervised monocular depth estimation. In: ICCV, pp. 12642–12652 (2021)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Klingner, M., Termöhlen, J.-A., Mikolajczyk, J., Fingscheidt, T.: Self-supervised monocular depth estimation: solving the dynamic object problem by semantic guidance. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 582–600. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_35
Li, X., et al.: Improving semantic segmentation via decoupled body and edge supervision. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 435–452. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_26
Li, X., et al.: Semantic flow for fast and accurate scene parsing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 775–793. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_45
Liu, L., Song, X., Wang, M., Liu, Y., Zhang, L.: Self-supervised monocular depth estimation for all day images using domain separation. In: ICCV, pp. 12737–12746 (2021)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV, pp. 10012–10022 (2021)
Mahjourian, R., Wicke, M., Angelova, A.: Unsupervised learning of depth and ego-motion from monocular video using 3d geometric constraints. In: CVPR, pp. 5667–5675 (2018)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037 (2019)
Peng, R., Wang, R., Lai, Y., Tang, L., Cai, Y.: Excavating the potential capacity of self-supervised monocular depth estimation. In: ICCV, pp. 15560–15569 (2021)
Pilzer, A., Lathuiliere, S., Sebe, N., Ricci, E.: Refine and distill: exploiting cycle-inconsistency and knowledge distillation for unsupervised monocular depth estimation. In: CVPR, pp. 9768–9777 (2019)
Poggi, M., Aleotti, F., Tosi, F., Mattoccia, S.: On the uncertainty of self-supervised monocular depth estimation. In: CVPR, pp. 3227–3237 (2020)
Ramamonjisoa, M., Firman, M., Watson, J., Lepetit, V., Turmukhambetov, D.: Single image depth prediction with wavelet decomposition. In: CVPR, pp. 11089–11098 (2021)
Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: ICCV, pp. 12179–12188 (2021)
Shu, C., Yu, K., Duan, Z., Yang, K.: Feature-metric loss for self-supervised learning of depth and egomotion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 572–588. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_34
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Tosi, F., Aleotti, F., Poggi, M., Mattoccia, S.: Learning monocular depth estimation infusing traditional stereo knowledge. In: CVPR, pp. 9799–9809 (2019)
Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity invariant CNNs. In: 2017 International Conference on 3D Vision (3DV), pp. 11–20 (2017)
Wang, K., et al.: Regularizing nighttime weirdness: efficient self-supervised monocular depth estimation in the dark. In: ICCV, pp. 16055–16064 (2021)
Wang, L., Wang, Y., Wang, L., Zhan, Y., Wang, Y., Lu, H.: Can scale-consistent monocular depth be learned in a self-supervised scale-invariant manner? In: ICCV, pp. 12727–12736 (2021)
Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: ICCV, pp. 568–578 (2021)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13(4), 600–612 (2004)
Watson, J., Firman, M., Brostow, G.J., Turmukhambetov, D.: Self-supervised monocular depth hints. In: ICCV (2019)
Yang, G., Tang, H., Ding, M., Sebe, N., Ricci, E.: Transformer-based attention networks for continuous pixel-wise prediction. In: ICCV, pp. 16269–16279 (2021)
Yin, Z., Shi, J.: GeoNet: unsupervised learning of dense depth, optical flow and camera pose. In: CVPR, pp. 1983–1992 (2018)
Zhou, J., Wang, Y., Qin, K., Zeng, W.: Moving indoor: unsupervised video depth learning in challenging environments. In: ICCV, pp. 8618–8627 (2019)
Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: CVPR, pp. 1851–1858 (2017)
Zhou, Z., Fan, X., Shi, P., Xin, Y.: R-MSFM: recurrent multi-scale feature modulation for monocular depth estimating. In: ICCV, pp. 12777–12786 (2021)
Zhu, S., Brazil, G., Liu, X.: The edge of depth: explicit constraints between segmentation and depth. In: CVPR, pp. 13116–13125 (2020)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. U1805264 and 61991423), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB32050100), the Beijing Municipal Science and Technology Project (Grant No. Z211100011021004).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, Z., Dong, Q. (2022). Self-distilled Feature Aggregation for Self-supervised Monocular Depth Estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13661. Springer, Cham. https://doi.org/10.1007/978-3-031-19769-7_41
Download citation
DOI: https://doi.org/10.1007/978-3-031-19769-7_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19768-0
Online ISBN: 978-3-031-19769-7
eBook Packages: Computer ScienceComputer Science (R0)