Abstract
Monocular 3D detection has drawn much attention from the community due to its low cost and setup simplicity. It takes an RGB image as input and predicts 3D boxes in the 3D space. The most challenging sub-task lies in the instance depth estimation. Previous works usually use a direct estimation method. However, in this paper we point out that the instance depth on the RGB image is non-intuitive. It is coupled by visual depth clues and instance attribute clues, making it hard to be directly learned in the network. Therefore, we propose to reformulate the instance depth to the combination of the instance visual surface depth (visual depth) and the instance attribute depth (attribute depth). The visual depth is related to objects’ appearances and positions on the image. By contrast, the attribute depth relies on objects’ inherent attributes, which are invariant to the object affine transformation on the image. Correspondingly, we decouple the 3D location uncertainty into visual depth uncertainty and attribute depth uncertainty. By combining different types of depths and associated uncertainties, we can obtain the final instance depth. Furthermore, data augmentation in monocular 3D detection is usually limited due to the physical nature, hindering the boost of performance. Based on the proposed instance depth disentanglement strategy, we can alleviate this problem. Evaluated on KITTI, our method achieves new state-of-the-art results, and extensive ablation studies validate the effectiveness of each component in our method. The codes are released at https://github.com/SPengLiang/DID-M3D.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bewley, A., Sun, P., Mensink, T., Anguelov, D., Sminchisescu, C.: Range conditioned dilated convolutions for scale invariant 3D object detection. arXiv preprint arXiv:2005.09927 (2020)
Brazil, G., Liu, X.: M3D-RPN: monocular 3D region proposal network for object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9287–9296 (2019)
Brazil, G., Pons-Moll, G., Liu, X., Schiele, B.: Kinematic 3D object detection in monocular video. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 135–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_9
Chai, Y., et al.: To the point: efficient 3D object detection in the range image with graph convolution kernels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2021)
Chen, H., Huang, Y., Tian, W., Gao, Z., Xiong, L.: Monorun: monocular 3D object detection by reconstruction and uncertainty propagation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10379–10388 (2021)
Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3D object detection for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2147–2156 (2016)
Chen, X., Kundu, K., Zhu, Y., Ma, H., Fidler, S., Urtasun, R.: 3D object proposals using stereo imagery for accurate object class detection. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1259–1272 (2017)
Chen, Y., Liu, S., Shen, X., Jia, J.: Fast point R-CNN. In: ICCV (2019)
Chen, Y., Tai, L., Sun, K., Li, M.: Monopair: monocular 3D object detection using pairwise spatial relationships. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12093–12102 (2020)
Chu, X., et al.: Neighbor-vote: improving monocular 3D object detection through neighbor distance voting. arXiv preprint arXiv:2107.02493 (2021)
Dijk, T.V., Croon, G.D.: How do neural networks see depth in single images? In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2183–2191 (2019)
Ding, M., Huo, Y., Yi, H., Wang, Z., Shi, J., Lu, Z., Luo, P.: Learning depth-guided convolutions for monocular 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11672–11681 (2020)
Fan, L., Xiong, X., Wang, F., Wang, N., Zhang, Z.: Rangedet: in defense of range view for lidar-based 3D object detection. arXiv preprint arXiv:2103.10039 (2021)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)
Hu, M., Wang, S., Li, B., Ning, S., Fan, L., Gong, X.: Penet: towards precise and efficient image guided depth completion. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 13656–13662. IEEE (2021)
Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? Adv. Neural Inf. Process. Syst. 30 (2017)
Ku, J., Pon, A.D., Waslander, S.L.: Monocular 3D object detection leveraging accurate proposals and shape reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11867–11876 (2019)
Kumar, A., Brazil, G., Liu, X.: GrooMed-NMS: grouped mathematically differentiable NMS for monocular 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8973–8983 (2021)
Li, B., Zhang, T., Xia, T.: Vehicle detection from 3D lidar using fully convolutional network. arXiv preprint arXiv:1608.07916 (2016)
Li, P., Zhao, H.: Monocular 3D detection with geometric constraint embedding and semi-supervised training. IEEE Robot. Autom. Lett. 6(3), 5565–5572 (2021)
Li, P., Zhao, H., Liu, P., Cao, F.: Rtm3d: real-time monocular 3D detection from object keypoints for autonomous driving. arXiv preprint arXiv:2001.03343 (2020)
Liu, X., Xue, N., Wu, T.: Learning auxiliary monocular contexts helps monocular 3D object detection. arXiv preprint arXiv:2112.04628 (2021)
Liu, Y., Yixuan, Y., Liu, M.: Ground-aware monocular 3D object detection for autonomous driving. IEEE Robot. Autom. Lett. 6(2), 919–926 (2021)
Liu, Z., Zhou, D., Lu, F., Fang, J., Zhang, L.: Autoshape: real-time shape-aware monocular 3d object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15641–15650 (2021)
Lu, Y., et al.: Geometry uncertainty projection network for monocular 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3111–3121 (2021)
Ma, X., Liu, S., Xia, Z., Zhang, H., Zeng, X., Ouyang, W.: Rethinking pseudo-lidar representation. arXiv preprint arXiv:2008.04582 (2020)
Ma, X., Wang, Z., Li, H., Zhang, P., Ouyang, W., Fan, X.: Accurate monocular 3D object detection via color-embedded 3D reconstruction for autonomous driving. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6851–6860 (2019)
Ma, X., et al.: Delving into localization errors for monocular 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4721–4730 (2021)
Manhardt, F., Kehl, W., Gaidon, A.: Roi-10d: monocular lifting of 2D detection to 6D pose and metric shape. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2069–2078 (2019)
Mao, J., et al.: Voxel transformer for 3D object detection. arXiv preprint arXiv:2109.02497 (2021)
Mousavian, A., Anguelov, D., Flynn, J., Kosecka, J.: 3D bounding box estimation using deep learning and geometry. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7074–7082 (2017)
Noh, J., Lee, S., Ham, B.: HVPR: hybrid voxel-point representation for single-stage 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14605–14614 (2021)
Park, D., Ambrus, R., Guizilini, V., Li, J., Gaidon, A.: Is pseudo-lidar needed for monocular 3D object detection? In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3142–3152 (2021)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8026–8037 (2019)
Peng, L., Liu, F., Yan, S., He, X., Cai, D.: OCM3D: object-centric monocular 3D object detection. arXiv preprint arXiv:2104.06041 (2021)
Peng, L., et al.: Lidar point cloud guided monocular 3D object detection. arXiv preprint arXiv:2104.09035 (2021)
Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D object detection from RGB-D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 918–927 (2018)
Qin, Z., Wang, J., Lu, Y.: MonogrNet: a geometric reasoning network for monocular 3D object localization. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 8851–8858 (2019)
Reading, C., Harakeh, A., Chae, J., Waslander, S.L.: Categorical depth distribution network for monocular 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8555–8564 (2021)
Roddick, T., Kendall, A., Cipolla, R.: Orthographic feature transform for monocular 3D object detection. arXiv preprint arXiv:1811.08188 (2018)
Shi, S., et al.: PV-RCNN: point-voxel feature set abstraction for 3D object detection. In: CVPR, pp. 10529–10538 (2020)
Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: CVPR, pp. 770–779 (2019)
Shi, S., Wang, Z., Shi, J., Wang, X., Li, H.: From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network. IEEE Trans. Pattern Anal. Mach. Intell. 43(8), 2647–2664 (2020)
Shi, X., Ye, Q., Chen, X., Chen, C., Chen, Z., Kim, T.K.: Geometry-based distance decomposition for monocular 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15172–15181 (2021)
Simonelli, A., Bulo, S.R., Porzi, L., López-Antequera, M., Kontschieder, P.: Disentangling monocular 3D object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1991–1999 (2019)
Wang, L., et al.: Depth-conditioned dynamic message propagation for monocular 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 454–463 (2021)
Wang, L., et al.: Progressive coordinate transforms for monocular 3D object detection. Adv. Neural. Inf. Process. Syst. 34, 13364–13377 (2021)
Wang, T., Xinge, Z., Pang, J., Lin, D.: Probabilistic and geometric depth: detecting objects in perspective. In: Conference on Robot Learning, pp. 1475–1485. PMLR (2022)
Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M., Weinberger, K.Q.: Pseudo-lidar from visual depth estimation: bridging the gap in 3D object detection for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8445–8453 (2019)
Yan, Y., Mao, Y., Li, B.: SECOND: sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018)
Yang, Z., Sun, Y., Liu, S., Jia, J.: 3DSSD: point-based 3D single stage object detector. In: CVPR, pp. 11040–11048 (2020)
Yang, Z., Sun, Y., Liu, S., Shen, X., Jia, J.: STD: sparse-to-dense 3D object detector for point cloud. In: ICCV, pp. 1951–1960 (2019)
Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3D object detection and tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11784–11793 (2021)
Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–2412 (2018)
Zhang, Y., Lu, J., Zhou, J.: Objects are different: flexible monocular 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3289–3298 (2021)
Zheng, W., Tang, W., Jiang, L., Fu, C.W.: SE-SSD: self-ensembling single-stage object detector from point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14494–14503 (2021)
Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)
Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)
Zhou, Y., He, Y., Zhu, H., Wang, C., Li, H., Jiang, Q.: Monocular 3D object detection: an extrinsic parameter free approach. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7556–7566 (2021)
Zou, Z., Ye, X., Du, L., Cheng, X., Tan, X., Zhang, L., Feng, J., Xue, X., Ding, E.: The devil is in the task: exploiting reciprocal appearance-localization features for monocular 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2713–2722 (2021)
Acknowledgments
This work was supported in part by The National Key Research and Development Program of China (Grant Nos: 2018AAA0101400), in part by The National Nature Science Foundation of China (Grant Nos: 62036009, U1909203, 61936006, 61973271), in part by Innovation Capability Support Program of Shaanxi (Program No. 2021TD-05).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Peng, L., Wu, X., Yang, Z., Liu, H., Cai, D. (2022). DID-M3D: Decoupling Instance Depth for Monocular 3D Object Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13661. Springer, Cham. https://doi.org/10.1007/978-3-031-19769-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-19769-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19768-0
Online ISBN: 978-3-031-19769-7
eBook Packages: Computer ScienceComputer Science (R0)