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Abstract. For black-box attacks, the gap between the substitute model
and the victim model is usually large, which manifests as a weak at-
tack performance. Motivated by the observation that the transferability
of adversarial examples can be improved by attacking diverse models
simultaneously, model augmentation methods which simulate different
models by using transformed images are proposed. However, existing
transformations for spatial domain do not translate to significantly di-
verse augmented models. To tackle this issue, we propose a novel spec-
trum simulation attack to craft more transferable adversarial examples
against both normally trained and defense models. Specifically, we ap-
ply a spectrum transformation to the input and thus perform the model
augmentation in the frequency domain. We theoretically prove that the
transformation derived from frequency domain leads to a diverse spec-
trum saliency map, an indicator we proposed to reflect the diversity
of substitute models. Notably, our method can be generally combined
with existing attacks. Extensive experiments on the ImageNet dataset
demonstrate the effectiveness of our method, e.g., attacking nine state-
of-the-art defense models with an average success rate of 95.4%. Our
code is available in https://github.com/yuyang-long/SSA.
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1 Introduction

In recent years, deep neural networks (DNNs) have achieved a considerable suc-
cess in the field of computer vision, e.g., image classification [15,16,55], face
recognition [40,43] and self-driving [2,34]. Nevertheless, there are still many
concerns regarding the stability of neural networks. As demonstrated in prior
works [39,12], adversarial examples which merely add human-imperceptible per-
turbations on clean images can easily fool state-of-the-art DNNs. Therefore, to
help improve the robustness of DNNs, crafting adversarial examples to cover as
many blind spots of DNNs as possible is necessary.
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(d) Inc-v3 (e) Inc-v4 (f) Res-152 (g) IncRes-v2ens

(a) Inc-v4 (Ours) (b) Inc-v4 (SI) (c) Inc-v4 (Admix)

Fig. 1: Visualization of the spectrum saliency maps (average of all images) for
normally trained models Inc-v3 [38], Inc-v4 [37], Res-152[15] and defense model
IncRes-v2ens [42]. (a): the result for our transformation images (N = 5) con-
ducted in frequency domain. (b∼c): the result for scale-invariant (m1 = 5) [22]
and Admix (m1 = 5, m2 = 3) [46] transformations conducted in spatial domain.
(d∼g): the results for raw images on four different models.

In general, settings of adversarial attacks can be divided into white-box and
black-box. For the former [3,28,59,26], an adversary has access to the model,
e.g., model architecture and parameters are known. Therefore, adversarial ex-
amples can be directly crafted by the gradient (w.r.t. the input) of the victim
model, and thus achieving a high success rate. However, white-box attack is usu-
ally impracticable in real-world applications because an adversary is impossible
to obtain all information about a victim model. To overcome this limitation, a
common practice of black-box attacks [4,53,10] turns to investigate the inher-
ent cross-model transferability of adversarial examples. Typically, an adversary
crafts adversarial examples via a substitute model (a.k.a. white-box model), and
then transfers them to a victim model (a.k.a. black-box model) for attacking.

However, the gap between the substitute model and the victim model is
usually large, which manifests as the low transferability of adversarial examples.
Although attacking diverse models simultaneously can boost the transferability,
collecting a large number of diverse models is difficult and training a model from
scratch is also time-consuming. To tackle this issue, model augmentation [22] is
proposed. In particular, typical model augmentation approaches [53,5,22] aim to
simulate diverse models by applying loss-preserving transformations to inputs.
Yet, all of existing works investigate relationships of different models in spatial
domain, which may overlook the essential differences between them.

To better uncover the differences among models, we introduce the spectrum
saliency map (see Sec. 3.2) from a frequency domain perspective since represen-
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tation of images in this domain have a fixed pattern [1,54], e.g., low-frequency
components of an image correspond to its contour. Specifically, the spectrum
saliency map is defined as the gradient of model loss function w.r.t. the fre-
quency spectrum of input image. As illustrated in Figure 1 (d∼g), spectrum
saliency maps of different models significantly vary from each other, which clearly
reveals that each model has different interests in the same frequency component.

Motivated by this, we consider tuning the spectrum saliency map to simulate
more diverse substitute models, thus generating more transferable adversarial
examples. To that end, we propose a spectrum transformation based on (dis-
crete cosine transform) DCT and (inverse discrete cosine transform) IDCT tech-
niques [1] to diversify input images. We theoretically prove that this spectrum
transformation can generate diverse spectrum saliency maps and thus simulate
diverse substitute models. As demonstrated in Figure 1 (a∼c), after averaging
results of diverse augmented models, only our resulting spectrum saliency map
can cover almost all those of other models. This demonstrates our proposed
spectrum transformation can effectively narrow the gap between the substitute
model and victim model. To sum up, our main contributions are as follows:

1) We discover that augmented models derived from the spatial domain trans-
formations are not significantly diverse, which may limit the transferability of
adversarial examples.

2) To overcome this limitation, we introduce the spectrum saliency map
(based on a frequency domain perspective) to investigate the differences among
models. Inspired by our finds, we propose a novel Spectrum Simulation Attack
to effectively narrow the gap between the substitute model and victim model.

3) Extensive experiments on the ImageNet dataset highlight the effective-
ness of our proposed method. Remarkably, compared to state-of-the-art transfer-
based attacks, our method improves the attack success rate by 6.3%∼12.2% for
normally trained models and 5.6%∼23.1% for defense models.

2 Related Works

2.1 Adversarial Attacks

Since Szegedy et al. [39] discover the existence of adversarial examples, vari-
ous attack algorithms [12,18,3,28,32,27,59,30,6,20,58,50,56,57,24] have been pro-
posed to investigate the vulnerability of DNNs. Among all attack branches,
FGSM-based black-box attacks [12,18,4,53,10,11,49,9] which resort to the trans-
ferability of adversarial examples are one of the most efficient families. Therefore,
in this paper, we mainly focus on this family to boost adversarial attacks.

To enhance the transferability of adversarial examples, it is crucial to avoid
getting trapped in a poor local optimum of the substitute model. Towards this
end, Dong et al. [4] adopt the momentum term at each iteration of I-FGSM [18]
to stabilize update direction. Lin et al. [22] further adapt Nesterov accelerated
gradient [31] into the iterative attacks with the aim of effectively looking ahead.
Gao et al. [10] propose patch-wise perturbations to better cover the discrimi-
nate region of images. In addition to considering better optimization algorithms,
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model augmentation [22] is also an effective strategy. Xie et al. [53] introduce a
random transformation to the input, thus improving the transferability. Dong
et al. [5] shift the input to create a series of translated images and approxi-
mately estimate the overall gradient to mitigate the problem of over-reliance
on the substitute model. Lin et al. [22] leverage the scale-invariant property of
DNNs and thus average the gradients with respect to different scaled images
to update adversarial examples. Zou et al. [60] modify DI-FGSM [53] to pro-
mote TI-FGSM [5] by generating multi-scale gradients. Wang et al. [45] consider
the gradient variance along momentum optimization path to avoid overfitting.
Wang et al. [47] average the gradients with respect to feature maps to disrupt
important object-aware features. Wang et al. [46] average the gradients of a set
of admixed images, which are the input image admixed with a small portion
of other images while maintaining the label of the input image. Wu et al. [50]
utilizes an adversarial transformation network to find a better transformation
for adversarial attacks in the spatial domain.

2.2 Frequency-based Analysis and Attacks

Several works [54,44,36,6,48] have analyzed DNNs from a frequency domain per-
spective. Wang et al. [44] notice DNNs’ ability in capturing high-frequency com-
ponents of an image which are almost imperceptible to humans. Dong et al. [54]
find that naturally trained models are highly sensitive to additive perturbations
in high frequencies, and both Gaussian data augmentation and adversarial train-
ing can significantly improve robustness against high-frequency noises.

In addition, there also exists several adversarial attacks based on frequency
domain. Guo et al. [13] propose a LF attack that only leverages the low-frequency
components of an image, which shows that low-frequency components also play
a significant role in model prediction as high-frequency components. Sharma et
al. [36] demonstrate that defense models based on adversarial training are less
sensitive to high-frequency perturbations but still vulnerable to low-frequency
perturbations. Duan et al. [6] propose the AdvDrop attack which generates ad-
versarial examples by dropping existing details of clean images in frequency
domain. Unlike these works that perturb a subset of frequency components, our
method aims to narrow the gap between models by frequency-based analysis.

2.3 Adversarial Defenses

To mitigate the threat of adversarial examples, numerous adversarial defense
techniques have been proposed in recent years. One popular and promising way
is adversarial training [12,25] which leverages adversarial examples to augment
the training data during the training phase. Tramèr et al. [42] introduce ensemble
adversarial training, which decouples the generation of adversarial examples from
the model being trained, to yield models with stronger robustness to black-box
attacks. Xie et al. [52] inject blocks that can denoise the intermediate features
into the network, and then end-to-end train it on adversarial examples to learn
to reduce perturbations in feature maps.
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Although adversarial training is the most effective strategy to improve the
robustness of the model at present, it inevitably suffers from time-consuming
training costs and is expensive to be applied to large-scale datasets and complex
DNNs. To avoid this issue, many works try to cure the infection of adversarial
perturbations before feeding to DNNs. Guo et al. [14] utilize multiple input
transformations (e.g., JPEG compression [7], total variance minimization [33]
and image quilting [8]) to recover from the adversarial perturbations. Liao et
al. [21] propose high-level representation guided denoiser (HGD) to suppress the
influence of adversarial perturbation. Xie et al. [51] mitigate adversarial effects
through random resizing and padding (R&P). Cohen et al. [17] leverage the
classifier with Gaussian data augmentation to create a provably robust classifier.

In addition, researchers also try to combine the benefits of adversarial train-
ing and input pre-processing methods to further improve the robustness of
DNNs. NeurIPS-r3 solution [41] propose a two-step procedure which first pro-
cess images with a series of transformations (e.g., rotation, zoom and sheer) and
then pass the outputs through an ensemble of adversarially trained models to
obtain the overall prediction. Naseer et al. [29] design a Neural Representation
Purifier (NRP) model that learns to clean adversarial perturbed images based
on the automatically derived supervision.

3 Methodology

In this section, we first give the basic definition of our task in Sec. 3.1, and then
introduce our motivation in Sec. 3.2. Based on the motivation, we provide a de-
tailed description of the proposed method - Spectrum Transformation (Sec. 3.3).
Finally, we introduce our overall attack algorithm in Sec. 3.4.

3.1 Preliminaries

Formally, let fθ : x → y denotes a classification model, where θ, x and y indicate
the parameters of the model, input clean image and true label, respectively. Our
goal is to craft an adversarial perturbation δ so that the resulting adversarial
example x′ = x+δ can successfully mislead the classifier, i.e., fθ(x

′) ̸= y (a.k.a.
non-targeted attack). To ensure an input is minimally changed, an adversarial
example should be in the ℓp-norm ball centered at x with radius ϵ. Following
previous works [4,53,5,10,46,47,9], we focus on the ℓ∞-norm in this paper. There-
fore, the generation of adversarial examples can be formulated as the following
optimization problem:

argmax
x′

J(x′, y; θ), s.t. ∥δ∥∞ ≤ ϵ, (1)

where J(x′, y; θ) is usually the cross-entropy loss. However, it is impractical to
directly optimize Eq. 1 via the victim model fθ under the black-box manner
because its parameter θ is inaccessible. To overcome this limitation, a common
practice is to craft adversarial examples via the accessible substitute model fϕ
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and relying on the transferability to fool the victim model. Taking I-FGSM [18]
as an example, adversarial examples at iteration t+ 1 can be expressed as:

x′
t+1 = clipx,ϵ{x′

t + α · sign
(
∇x′

t
J (x′

t, y;ϕ)
)
}, (2)

where clipx,ϵ(·) denotes an element-wise clipping operation to ensure x′ ∈ [x−
ϵ,x+ ϵ], and α is the step size.

3.2 Spectrum Saliency Map

In order to effectively narrow the gap between models, it is important to un-
cover the essential differences between them. Recently, various attack meth-
ods [12,18,4,53,5,10,60,22,45,46] have been proposed to boost the transferability
of adversarial examples. Among these algorithms, model augmentation [22] is
one of the most effective strategies. However, existing works (e.g., [5,22]) usu-
ally augment substitute models by applying loss-preserving transformations in
the spatial domain, which might ignore essential differences among models and
reduce the diversity of substitute models. Intuitively, different models usually
focus on similar spatial regions of each input image since location of key objects
in images is fixed. By contrast, as demonstrated in previous work [48,54,44], dif-
ferent models usually rely on different frequency components of each input image
when making decisions.

Motivated by this, we turn to explore correlations among models from a
perspective of frequency domain. Specifically, we adopt DCT to transform input
images x from the spatial domain to the frequency domain. The mathematical
definition of the DCT (denoted as D(·)4 in the following) can be simplified as:

D(x) = AxAT, (3)

where A is an orthogonal matrix and thus AAT is equal to the identity matrix
I. Formally, low-frequency components whose amplitudes are high tend to be
concentrated in the upper left corner of a spectrum, and high-frequency com-
ponents are located in the remaining area. Obviously, the pattern of frequency
domain is more fixed compared with diverse representations of images in spatial
domain (more visualizations can be found in supplementary Sec. D.1). There-
fore, we propose a spectrum saliency map Sϕ to mine sensitive points of different
models fϕ, which is defined as:

Sϕ =
∂J(DI(D(x)), y;ϕ)

∂D(x)
, (4)

where DI(·) denotes the IDCT which can recover the input image from frequency
domain back to spatial domain. Note that both the DCT and the IDCT are
lossless, i.e., DI(D(x)) = ATD(x)A = x.

From the visualization result of Sϕ shown in Figure 1, we observe that fre-
quency components of interest usually varies from model to model. Hence, the
spectrum saliency map can serve as an indicator to reflect a specific model.

4In the implementation, DCT is applied to each color channel independently.
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3.3 Spectrum Transformation

The analysis above motivates us that if we can simulate augmented models with
a similar spectrum saliency map to victim model, the gap between the substitute
model and victim model can be significantly narrowed and adversarial examples
can be more transferable.
Lemma 1. Assume both B1 and B2 are n-by-n matrix and B1 is invertible,
then there must exist an n-by-n matrix C that can make B1 × C = B2.

Lemma 1 shows that it is possible to make two matrices (note the essence
of spectrum saliency map is also a matrix) equal in the form of a matrix trans-
formation. However, the spectrum saliency map of vicitm model is usually not
available under black-box setting. Moreover, spectrum saliency map of substi-
tute model is high-dimensional and not guaranteed to be invertible. To tackle
this problem, we propose a random spectrum transformation T (·) which decom-
poses matrix multiplication into matrix addition and Hadamard product to get
diverse spectrums. Specifically, in combination with the DCT/IDCT, our T (·)
can be expressed as:

T (x) = DI((D(x) +D(ξ))⊙M), (5)

= DI(D(x+ ξ)⊙M) (6)

where ⊙ denotes Hadamard product, ξ ∼ N (0, σ2I) and each element of M ∼
U(1−ρ, 1+ρ) are random variants sampled from Gaussian distribution and Uni-
form distribution, respectively. In practice, common DCT/IDCT paradigm [6,19],
i.e., splitting the image into several blocks before applying DCT, not works well
for boosting transferability (see the ablation study for experimental details).
Therefore, we apply DCT on the whole image in our experiments and visualiza-
tion of transformation outputs can be found in supplementary Sec. D.2.

Formally, T (·) is capable of yielding diverse spectrum saliency maps (we
also provide proof in supplementary Sec. A) which can reflect the diversity of
substitute models, and meanwhile, narrowing the gap with the victim model. As
illustrated in Figure 1, previously proposed transformations [22,46] in the spatial
domain (i.e., (b & c)) is less effective for generating diverse spectrum saliency
maps, which may lead to a weaker model augmentation. In contrast, with our
proposed spectrum transformation, resulting spectrum saliency map (i.e., (a))
can cover almost all those of other models.

3.4 Attack Algorithm

In Sec. 3.3, we have introduced our proposed spectrum transformation. This
method could be integrated with any gradient-based attacks. For instance, in
combination with I-FGSM [18] (i.e., Eq. 2), we propose the Spectrum Simulation
Iterative Fast Gradient Sign Method (S2I-FGSM). The algorithm is detailed in
Algorithm 1. Technically, our attack can be mainly divided into three steps. First,
in lines 3-6, we apply our spectrum transformation T (·) to the input image x′

t so
that the gradient g′

i obtained from the substitute model is approximately equal
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Algorithm 1: S2I-FGSM

Input : A classifier f with parameters ϕ; loss function J ; a clean image x
with ground-truth label y; iterations T ; L∞ constraint ϵ; spectrum
transformation times N ; tunning factor ρ; std σ of noise ξ.

Output: The adversarial example x′

1 α = ϵ/T , x′
0 = x

2 for t = 0 → T − 1 do
3 for i = 1 → N do
4 Get transformation output T (x′

t) using Eq. 6
5 Gradient calculate g′

i = ∇x′
t
J(T (x′

t), y;ϕ)

6 end

7 Average gradient: g′ = 1
N

∑N
i=1 g

′
i

8 x′
t+1 = clipx,ϵ {x′

t + α · sign(g′)}
9 x′

t+1 = clip(x′
t+1, 0, 1)

10 end
11 x′ = x′

T

12 return x′

to the result obtained from a new model, i.e., model augmentation. Second, in
line 7, we averageN augmented models’ gradients to obtain a more stable update
direction g′. Finally, in line 8, we update adversarial examples x′

t+1 of iteration
t+ 1. In short, the above process can be summarised in the following formula:

x′
t+1 = clipx,ϵ{x′

t + α · sign( 1
N

N∑
i=1

∇x′
t
J(T (x′

t), y;ϕ))}. (7)

The resulting adversarial examples are shown in Figure 2. Compared with I-
FGSM [18] and SI-FGSM [22], our proposed S2I-FGSM can craft more threat-
ening adversarial examples for fooling black-box models.

4 Experiments

4.1 Experiment Setup

Dataset. Following previous works [4,5,9,10], we conduct our experiments on
the ImageNet-compatible dataset5, which contains 1000 images with resolution
299× 299× 3.

Models.We choose six popular normally trained models, including Inception-
v3 (Inc-v3) [38], Inception-v4 (Inc-v4) [37], Inception-Resnet-v2 (IncRes-v2) [37],
Resnet-v2-50 (Res-50), Resnet-v2-101 (Res-101) and Resnet-v2-152 (Res-152)
[15]. For defenses, we consider nine defense models (i.e., Inc-v3ens3, Inc-v3ens4,

5https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_

v3.1.0/examples/nips17_adversarial_competition/dataset

https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.1.0/examples/nips17_adversarial_competition/dataset
https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.1.0/examples/nips17_adversarial_competition/dataset
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Fig. 2: The comparisons of attacks on Inc-v3 [38], Inc-v4 [37], IncRes-v2 [37]
and Res152 [15]. The true label of clean image is American coot and marked
as orange in the top-5 confidence distribution plots. The adversarial examples
are crafted via Inc-v3 [38] by I-FGSM [18], SI-FGSM [22] and our proposed S2I-
FGSM, respectively. Remarkably, our method can attack the white-box model
and all black-box models successfully.

IncRes-v2ens [42], HGD [21], R&P [51], NIPS-r3 [41], JPEG [14], RS [17] and
NRP [29]) that are robust against black-box attacks.

Competitor. To show the effectiveness of our proposed spectrum simulation
attack, we compare it with diverse state-of-the-art attack methods, including
MI-FGSM [4], DI-FGSM [53], TI-FGSM [5], PI-FGSM [10], SI-NI-FGSM [22],
VT-FGSM [45], FI-FGSM [47] and Admix [46]. Besides, we also compare the
combined version of these methods, e.g., TI-DIM (combined version of TI-FGSM,
MI-FGSM and DI-FGSM) and SI-NI-TI-DIM.

Parameter Settings. In all experiments, the maximum perturbation ϵ =
16, the iteration T = 10, and the step size α = ϵ/T = 1.6. For MI-FGSM, we set
the decay factor µ = 1.0. For DI-FGSM, we set the transformation probability
p = 0.5. For TI-FGSM, we set the kernel length k = 7. For PI-FGSM, we set the
amplification factor β = 10, project factor γ = 16 and the kernel length kw =
3 for normally trained models, kw = 7 for defense models. For SI-NI-FGSM, we
set the number of copies m1 = 5. For VT-FGSM, we set the hyper-parameter β
= 1.5, number of sampling examples is 20. For FI-FGSM, the drop probability
pd = 0.3 for normally trained models and pd = 0.1 for defense models, and the
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Table 1: The attack success rates (%) on six normally trained models. The ad-
versarial examples are crafted via Inc-v3, Inc-v4, IncRes-v2 and Res-152, respec-
tively. “*” indicates white-box attacks.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-152 Res-50 Res-101 AVG.

Inc-v3

MI-FGSM 100.0* 50.6 47.2 40.6 46.9 41.7 54.5
DI-FGSM 99.7* 48.3 38.2 31.8 39.0 33.8 48.5
PI-FGSM 100.0* 56.5 49.6 45.0 50.1 44.7 57.7

S2I-FGSM(ours) 99.7* 65.0 58.9 50.3 56.2 53.3 63.9
SI-NI-FGSM 100.0* 76.0 75.8 67.7 73.0 69.4 77.0
VT-MI-FGSM 100.0* 75.0 69.6 62.7 67.1 63.1 72.9
FI-MI-FGSM 98.8* 83.6 80.0 72.7 80.2 74.9 81.7

S2I-MI-FGSM(ours) 99.6* 88.2 85.8 81.0 83.4 81.3 86.6

Inc-v4

MI-FGSM 62.0 100.0* 46.2 41.4 47.7 42.8 56.7
DI-FGSM 54.1 99.1* 36.3 31.4 33.7 30.4 47.5
PI-FGSM 60.3 100.0* 45.9 44.1 50.3 42.7 57.2

S2I-FGSM(ours) 70.2 99.6* 57.1 48.1 56.5 47.7 63.2
SI-NI-FGSM 83.8 99.9* 78.2 73.3 77.0 73.9 81.0
VT-MI-FGSM 77.8 99.8* 71.5 64.1 65.7 64.4 73.9
FI-MI-FGSM 84.9 94.7* 78.0 75.4 78.0 75.7 81.1

S2I-MI-FGSM(ours) 90.3 99.6* 86.5 83.1 83.3 81.0 87.3

IncRes-v2

MI-FGSM 60.4 52.8 99.4* 45.9 49.1 46.3 59.0
DI-FGSM 56.5 49.1 97.8* 35.6 38.3 37.1 52.4
PI-FGSM 62.6 57.9 99.5* 47.0 51.4 47.9 61.1

S2I-FGSM(ours) 76.0 67.7 98.3* 56.2 59.8 58.4 69.4
SI-NI-FGSM 86.4 82.3 99.8* 76.8 79.6 76.4 83.4
VT-MI-FGSM 79.3 75.6 99.5* 66.8 69.5 69.5 76.7
FI-MI-FGSM 81.9 77.9 89.2* 72.3 75.2 75.0 78.6

S2I-MI-FGSM(ours) 89.8 89.0 98.4* 84.9 86.0 84.3 88.7

Res-152

MI-FGSM 54.7 50.1 45.5 99.4* 84.0 86.5 70.0
DI-FGSM 57.3 51.5 47.2 99.3* 83.1 85.1 70.6
PI-FGSM 63.2 55.1 47.8 99.7* 82.8 84.8 72.2

S2I-FGSM(ours) 66.8 62.8 57.4 99.7* 92.8 94.4 79.0
SI-NI-FGSM 75.3 72.9 70.2 99.7* 94.5 94.9 84.6
VT-MI-FGSM 73.7 69.4 66.4 99.5* 93.1 93.8 82.7
FI-MI-FGSM 83.7 82.1 78.6 99.4* 93.6 94.2 88.6

S2I-MI-FGSM(ours) 88.1 86.9 86.3 99.7* 97.5 97.6 92.7

ensemble number is 30. For Admix, we set number of copies m1 = 56 , sample
number m2 = 3 and the admix ratio η = 0.2. For our proposed S2I-FGSM, we set
the tuning factor ρ = 0.5 for M , the standard deviation σ of ξ is simply set to
the value of ϵ, and the number of spectrum transformations N = 20 (discussions
about ρ, σ and N can be found in supplementary Sec. B). The parameter settings
for the combined version are the same.

4.2 Attack Normally Trained Models

In this section, we investigate the vulnerability of normally trained models. We
first compare S2I-FGSM with MI-FGSM [4], DI-FGSM [53], PI-FGSM [10] to
verify the effectiveness of our method in Table 1. A first glance shows that
S2I-FGSM consistently surpasses well-known baseline attacks on all black-box
models. For example, when attacking against Inc-v3, MI-FGSM, DI-FGSM and
PI-FGSM only successfully transfer 47.2%, 38.2% and 49.6% adversarial exam-
ples to IncRes-v2, while our S2I-FGSM can achieve a much higher success rate

6Note that Admix is equipped with SI-FGSM by default.
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Table 2: The attack success rates (%) on nine defenses. The adversarial examples
are crafted via Inc-v3, Inc-v4, IncRes-v2 and Res-152, respectively.

Model Attack Inc-v3ens3 Inc-v3ens4
IncRes-
v2ens

HGD R&P NIPS-r3 JPEG RS NRP AVG.

Inc-v3

TI-DIM 43.2 42.1 27.9 36.0 30.2 37.4 56.7 55.8 22.0 39.0
PI-TI-DI-FGSM 43.5 46.3 35.3 33.9 35.2 39.9 47.6 74.9 37.0 43.7
SI-NI-TI-DIM 55.0 53.0 36.5 37.0 37.9 48.5 72.3 55.2 32.7 47.6
VT-TI-DIM 61.3 60.4 46.6 53.9 47.8 53.3 68.3 62.4 36.1 54.5
FI-TI-DIM 61.8 59.6 49.2 51.7 48.3 55.0 71.3 64.5 38.0 55.5

Admix-TI-DIM 75.3 72.1 56.7 65.8 59.8 66.0 83.7 70.5 45.3 66.1
S2I-TI-DIM (ours) 81.5 81.2 69.8 77.8 70.1 77.2 86.7 71.8 56.0 74.7
S2I-SI-DIM (ours) 83.8 81.8 64.8 71.1 68.9 77.4 91.8 72.6 52.3 73.8

S2I-SI-TI-DIM (ours) 88.6 87.8 77.9 81.1 77.6 83.3 91.3 71.0 55.1 79.3

Inc-v4

TI-DIM 38.4 38.1 27.7 33.7 29.5 33.0 51.2 55.0 19.0 36.2
PI-TI-DI-FGSM 42.3 43.8 32.5 33.0 33.9 36.7 46.0 74.8 32.3 41.7
SI-NI-TI-DIM 60.2 56.9 43.8 46.0 46.5 52.7 73.7 56.3 32.5 52.1
VT-TI-DIM 57.7 57.2 46.9 55.1 48.9 50.4 63.3 59.1 34.9 52.6
FI-TI-DIM 61.0 58.4 50.6 53.6 51.7 55.1 67.7 62.6 38.6 55.5

Admix-TI-DIM 77.3 74.1 63.8 73.4 67.1 71.4 82.6 67.2 48.0 69.4
S2I-TI-DIM (ours) 78.7 78.0 69.9 76.6 71.9 77.1 83.5 73.4 55.0 73.8
S2I-SI-DIM (ours) 86.0 83.7 72.4 78.4 76.8 81.7 91.2 73.9 60.9 78.3

S2I-SI-TI-DIM (ours) 88.7 87.7 81.7 86.1 83.5 86.3 90.8 75.0 59.6 82.2

IncRes-v2

TI-DIM 48.0 43.6 38.9 43.9 40.5 43.2 57.3 57.3 24.7 44.2
PI-TI-DI-FGSM 49.7 51.1 46.0 40.1 45.9 47.8 50.6 78.0 41.0 50.0
SI-NI-TI-DIM 71.8 62.8 55.6 53.2 59.6 64.7 82.0 60.6 41.0 61.3
VT-TI-DIM 65.9 60.1 58.2 60.3 57.6 60.1 70.1 61.2 36.9 58.9
FI-TI-DIM 58.1 54.4 53.5 52.6 52.2 56.8 64.2 64.4 39.8 55.1

Admix-TI-DIM 85.3 82.0 79.5 82.4 79.6 82.4 85.9 74.2 59.7 79.0
S2I-TI-DIM (ours) 82.6 79.9 79.2 79.5 79.3 81.2 86.1 74.2 61.6 78.2
S2I-SI-DIM (ours) 90.3 88.6 83.7 86.6 84.1 86.9 92.0 75.5 69.0 84.1

S2I-SI-TI-DIM (ours) 92.1 91.0 90.6 90.8 89.2 90.9 93.3 79.2 73.4 87.8

Res-152

TI-DIM 55.1 52.3 42.5 55.6 46.5 52.3 64.9 61.2 32.2 51.4
PI-TI-DI-FGSM 54.3 56.2 45.3 43.7 46.2 48.9 55.2 78.1 47.7 52.8
SI-NI-TI-DIM 68.6 64.0 52.4 58.9 56.8 64.2 80.1 67.5 42.3 61.6
VT-TI-DIM 64.3 61.4 54.9 60.7 54.8 59.4 69.3 67.9 41.2 59.3
FI-TI-DIM 70.1 66.0 59.5 63.9 60.8 66.0 77.5 71.0 47.2 64.7

Admix-TI-DIM 83.7 81.4 73.7 81.2 77.0 80.1 87.8 75.0 59.5 77.7
S2I-TI-DIM (ours) 86.6 83.9 79.0 85.3 81.8 85.5 90.6 80.9 66.1 82.2
S2I-SI-DIM (ours) 89.3 84.4 77.9 86.6 82.7 86.3 92.8 76.4 65.9 82.5

S2I-SI-TI-DIM (ours) 92.5 88.6 85.3 88.6 87.8 89.8 92.4 83.6 72.0 86.7

of 58.9%. This convincingly validates the high effectiveness of our proposed
method against normally trained models.

Besides, we also report the results for methods with the momentum term [4].
As displayed in Table 1, the performance gap between our proposed method and
state-of-the-art approaches is still large. Notably, adversarial examples crafted
by our proposed S2I-MI-FGSM are capable of getting 88.8% success rate on
average, which outperforms SI-NI-FGSM, VT-MI-FGSM and FI-MI-FGSM by
7.3%, 12.2% and 6.3%, respectively. This also demonstrates that the combination
of our method and existing attacks can significantly enhance the transferability
of adversarial examples.

4.3 Attack Defense Models

Although many attack methods can easily fool normally trained models, they
may fail in attacking models with the defense mechanism. To further verify the
superiority of our method, we conduct a series of experiments against defense
models. Given that the vanilla versions of attacks are less effective for defense
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Table 3: The attack success rates (%) on nine defenses. The adversarial examples
are crafted via an ensemble of Inc-v3, Inc-v4, IncRes-v2 and Res-152 and the
weight for each model is 1/4.

Attack Inc-v3ens3 Inc-v3ens4
IncRes-
v2ens

HGD R&P NIPS-r3 JPEG RS NRP AVG.

TI-DIM 79.2 75.3 69.3 80.4 73.9 76.7 87.5 68.3 43.1 72.6
PI-TI-DI-FGSM 75.0 76.0 67.7 69.5 68.0 72.6 77.8 83.4 60.8 72.3
SI-NI-TI-DIM 90.2 87.9 80.0 83.2 83.5 87.8 94.3 81.4 59.2 83.1
VT-TI-DIM 85.0 82.3 78.3 83.9 79.4 81.9 88.5 74.5 59.7 79.3
FI-TI-DIM 83.1 83.6 74.6 84.9 76.5 78.6 90.2 72.2 61.2 78.3

Admix-TI-DIM 93.9 92.9 90.3 94.0 91.3 92.0 95.6 82.4 76.0 89.8
S2I-TI-DIM (ours) 94.6 94.3 92.5 94.3 93.1 94.3 95.8 87.4 83.5 92.2
S2I-SI-DIM (ours) 96.5 96.3 94.2 95.8 94.9 96.0 97.4 88.2 87.3 94.1

S2I-SI-TI-DIM (ours) 96.7 96.7 95.2 96.3 95.7 96.5 96.9 92.2 92.2 95.4

models, we consider the stronger DIM, TI-DIM, PI-TI-DI-FGSM, SI-NI-TI-DIM,
VT-TI-DIM, FI-TI-DIM and Admix-TI-DIM as competitors to our proposed
S2I-TI-DIM, S2I-SI-DIM and S2I-SI-TI-DIM.

Single-Model Attacks. We first investigate the transferability of adversar-
ial examples crafted via a single substitute model. From the results of Table 2,
we can observe that our algorithm can significantly boost existing attacks. For
example, suppose we generate adversarial examples via Inc-v3, TI-DIM only
achieves an average success rate of 39.0% on the nine defense models, while our
proposed S2I-TI-DIM can yield about 2× transferability, i.e., outperforms TI-
DIM by 35.7%. This demonstrates the remarkable effectiveness of our proposed
method against defense models.

Ensemble-based Attacks. We also report the results for attacking an en-
semble of models simultaneously [23] to demonstrate the effectiveness of our
proposed method. In particular, the adversarial examples are crafted via an en-
semble of Inc-v3, Inc-v4, IncRes-v2 and Res-152. Similar to the results of Table 2,
our S2I-SI-TI-DIM displayed in Table 3 still consistently surpass state-of-the-art
approaches. Remarkably, S2I-SI-TI-DIM is capable of obtaining 95.4% success
rate on average, which outperforms SI-NI-TI-DIM, VT-TI-DIM, FI-TI-DIM and
Admix-TI-DIM by 23.1%, 12.4%, 16.1%, 17.1% and 5.6%, respectively. This also
reveals that current defense mechanisms are still vulnerable to well-design ad-
versarial examples and far from the need of real security.

4.4 Ablation Study

In this section, we analyze the impact of different aspects of our method:
Frequency domain vs. Spatial domain. For our proposed S2I-FGSM,

transformation is applied in the frequency domain. To verify that frequency do-
main transformation (i.e., our spectrum transformation) is more potent in nar-
rowing the gap between models than spatial domain transformation (i.e., remove
the DCT/IDCT in spectrum transformation), we conduction an ablation study.
As depicted in Figure 3 (left), regardless of what substitute models are attacked,
the transferability of adversarial examples crafted based on frequency domain
transformation is consistently higher than that of spatial domain transformation.
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Fig. 3: The average attack success rates (%) on six normally trained models (in-
troduced in Sec. 4.1). The adversarial examples are crafted via Inc-v3, Inc-v4,
IncRes-v2 and Res-152, respectively. Left: Effect of frequency domain transfor-
mation. Right: Effect of ξ and M .

Notably, when attacking against Inc-v3, the attack based on frequency domain
transformation (i.e., S2I-FGSM) outperforms the attack based on spatial do-
main transformation by a large margin of 15.0%. This convincingly validates
that frequency domain can capture more essential differences among models,
thus yielding more diverse substitute models than spatial domain.

Effect of ξ and M . To analyze the effect of each random variant (i.e., ξ
and M) in our spectrum transformation, we conduct the experiment in Figure 3
(right). From this result, we observe that both ξ and M are useful for enhanc-
ing the transferability of adversarial examples. It is because both of them can
manipulate the spectrum saliency map to a certain extent, albeit from differ-
ent aspects of implementation. Therefore, by leveraging them simultaneously,
our proposed spectrum transformation can simulate a more diverse substitute
model, thus significantly boosting attacks.

On the block size of DCT/IDCT. Previous works [6,19] usually started
by splitting images into small blocks with size n×n and then apply DCT/IDCT.
However, it is not clear that this paradigm is appropriate for our approach.
Therefore, in this part, we investigate the impact of block size on the transfer-
ability. Specifically, we tune the block size from 8×8 to 299×299 (full image size)
and report the attack success rates of S2I-FGSM in Figure 4. From this result,
we observe that larger blocks are more suited to our approach. Particularly, the
attack success rates reach peak when the size of the block is the same as the full
image size. Therefore, in our experiment, we do not split the image beforehand
and directly apply DCT/IDCT on the full image to get its spectrum (we also
provide time analysis of DCT/IDCT in supplementary Sec. C).

Attention shift. To better understand the effectiveness of our attack, we
apply Grad-CAM [35] to compare attention maps of clean images with those
of adversarial examples. As illustrated in Figure 5, our proposed method can
effectively shift the model’s attention from the key object to other mismatched
regions. Consequently, the victim model inevitably captures other irrelevant fea-
tures, thus leading to misclassification.
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Fig. 4: The attack success rates (%) of S2I-FGSM on normally trained models
(Left) and defense models (Right) w.r.t. the block size of DCT/IDCT. Adver-
sarial examples are generated via Inc-v3.
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Fig. 5: Visualization for attention shift. We apply Grad-CAM [35] for Res-152 [15]
to visualize attention maps of clean (1st row) and adversarial images (2nd row).
Adversarial examples are crafted via Inc-v3 by our S2I-FGSM. The result demon-
strates that our adversarial examples are capable of shifting model’s attention.

5 Conclusion

In this paper, we propose a Spectrum Simulation Attack to boost adversarial
attacks from a frequency domain perspective. Our work gives a novel insight into
model augmentation, which narrows the gap between the substitute model and
victim model by a set of spectrum transformation images. We also conduct a
detailed ablation study to clearly illustrate the effect of each component. Com-
pared with traditional model augmentation attacks in spatial domain, extensive
experiments demonstrate the significant effectiveness of our method, which out-
performs state-of-the-art transfer-based attacks by a large margin.
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A Proof

Proposition 1. Our proposed spectrum transformation can generate diverse
spectrum saliency maps and thus simulate diverse substitute models.
Proof . According to Lagrange’s mean value theorem:

∂J(x1, y;ϕ)

∂x1
=

∂J(x2, y;ϕ)

∂x2
+K, (8)

where K = ∂2J(ζ,y;ϕ)
∂ζ2 (x1 − x2), ζ ∈ [x2,x1].

Without spectrum transformation function T (·), spectrum saliency map:

Sϕ =
∂J(DI(D(x)), y;ϕ)

∂D(x)
, (9)

after applying our proposed spectrum transformation function T (·), the resulting
spectrum saliency map:

S′
ϕ =

∂J(T (x), y;ϕ)

∂D(x)
, (10)

where T (x) = DI((D(x) +D(ξ))⊙M)

LetD1 denotes ∂J(DI(D(x)),y;ϕ)
∂DI(D(x)) andD2 denotes ∂DI(D(x))

∂D(x) , then Sϕ = D1D2

(according to chain rule). After applying T (·) to x, resulting spectrum saliency
map S′

ϕ can be expressed as:

S′
ϕ = D′

1D
′
2 ⊙M , (11)

where

D′
1 =

∂J(DI(D(x+ ξ)⊙M), y;ϕ)

∂DI(D(x+ ξ)⊙M)
, (12)

D′
2 =

∂DI(D(x+ ξ)⊙M)

∂(D(x+ ξ)⊙M))
. (13)

Based on Eq. 8, we can formally formulate S′
ϕ to be:

S′
ϕ = (D1 +K1)(D2 +K2)⊙M ,

= (Sϕ +K′)⊙M ,
(14)

where K1 and K2 are two specific matrices, and K′ = D1K2+D2K1+K1K2.
Eq. 14 clearly demonstrates that our proposed transformation T (·) is capable of
simulating a different spectrum saliency map.

B On the Hyper-Parameters Settings

We first study the influence of the hyper-parameters(i.e., standard deviation
(std) σ of noise ξ, tuning factor ρ of matrix M , number N of spectrum trans-
formations) for the proposed Spectrum Simulation Attack method.
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B.1 On the Standard Deviation σ of Noise ξ

In Figure 6, we report the attack success rates of S2I-FGSM for different std σ.
Adversarial examples are crafted via Inc-v3 with N = 20 and ρ = 0.5. Partic-
ularly, σ = 0 means no noise is added to the input. A first glance shows that
for normally trained models, the attack success rates increase gradually as σ
increases and then tend to decrease when σ exceeds 16. Also when σ = 16, the
defense models can achieve relatively high attack success rates. Therefore, we
set σ = 16 in our paper.
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Fig. 6: The attack success rates (%) of S2I-FGSM on normally trained and de-
fense models w.r.t. the std σ of ξ. Adversarial examples are generated via Inc-v3.
Left: The results for fooling normally trained models. Right: The results for
fooling defense models.

B.2 On the Tuning Factor ρ of Matrix M

In this section, we study the effect of tuning factor ρ for our S2I-FGSM in Fig-
ure 7. Adversarial examples are crafted via Inc-v3 with N = 20 and σ = 16.
Particularly, ρ = 0 means there is no tuning on the spectrum. Similarly, as ρ in-
creases, the degree of spectrum transformation becomes stronger and the attack
success rates gradually increase and peak at ρ = 0.5. If we continue to increase
ρ (i.e. ρ > 0.5), the attack success rates will decrease which may be attributed
to the excessive spectrum transformation. To achieve better transferability, we
choose ρ = 0.5 in our paper.

B.3 On the Number N of Spectrum Transformations.

In this section, we study the effect of number N of spectrum transformations
for our S2I-FGSM in Figure 8. Adversarial examples are crafted via Inc-v3 with
ρ = 0.5 and σ = 16. As shown in Figure 8, when N = 1, our method performs
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Fig. 7: The attack success rates (%) of S2I-FGSM on normally trained and de-
fense models w.r.t. the tuning factor ρ. Adversarial examples are generated via
Inc-v3. Left: The results for fooling normally trained models. Right: The results
for fooling defense models.

only one spectrum transformation and achieves the lowest transferability. As N
increases, the transferability of adversarial examples is significantly enhanced at
first, and turns to increase slowly after N exceeds 20. It also demonstrates that
our spectrum transformation can effectively narrow the gap between the substi-
tute model and victim model. It is worth noting that larger N implies expensive
computational overhead, as we need more forward and backward propagation
for gradient computation at each iteration. To balance the transferability and
computational overhead, we choose N = 20 in our paper.
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Fig. 8: The attack success rates (%) of S2I-FGSM on normally trained and de-
fense models w.r.t. the number N of spectrum transformations. Adversarial ex-
amples are generated via Inc-v3. Left: The results for fooling normally trained
models. Right: The results for fooling defense models.
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C Time Analysis of DCT/IDCT

In our experiments, we directly apply DCT/IDCT on the full image which is a
time-consuming operation. Therefore, in this section we analyze the time con-
sumption of DCT/IDCT. In Tab.4 we show the average time of an adversarial
example generated by S2I-FGSM and the average time of DCT/IDCT among it.
For example, let IncRes-v2 be the substitute model, S2I-FGSM takes an average
of 3.78s to produce an adversarial example, of which DCT/IDCT takes up 0.58s
(only accounts for 15.3% of all overheads). The experiment is conducted on RTX
3090 GPUs.

Table 4: The average time (s) of generating an adversarial example on Inc-v3,
Inc-v4, IncRes-v2 and Res-152, respectively. The left side of slash indicates the
time of DCT/IDCT and right side indicates the time of S2I-FGSM.

Inc-v3 Inc-v4 IncRes-v2 Res-152

Time 0.60/1.89 0.61/2.85 0.58/3.78 0.61/3.05

D Additional Results

D.1 Spatial Domain Transformation Analysis

In this section, we further validate our point that analysis on spatial domain
cannot well reflect the gap between models. To support our point, we first define
spatial saliency map Ŝϕ as:

Ŝϕ =
∂J(x, y;ϕ)

∂x
, (15)

which is similar to our proposed spectrum saliency map Sϕ in Eq. 4. Then we flip
the image horizontally (spatial domain transformation) and analyze their spatial
saliency map and frequency saliency map. As shown in Figure 9, although spatial
saliency maps between raw image and fliped image vary greatly, the changes in
frequency spectrum and frequency saliency map (an indicator reflecting the char-
acteristics of models) are small. Thus, analysis on spatial domain is unreliable
and can hardly reflect the gap between models.

D.2 Spectrum Transformation Images

To better understand the process of our method, we visualize the outputs of
spectrum transformation. Specifically, we perform several spectrum transforma-
tions on input images and show the resulting spectrum transformation outputs
in Figure 10. This figure shows that spectrum transformation just modifies colors
of image and does not change its semantic information.
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frequency spectrum spatial saliency map frequency saliency map

Fig. 9: Visualization for frequency spectrum, spatial saliency map, and frequency
saliency map. Top raw corresponds to raw image, and bottom row corresponds
to spatial domain transformed image. This result demonstrates that analysis on
spatial domain is unreliable.

Fig. 10: Visualization for the spectrum transformation outputs (right columns)
w.r.t. raw input images (left column). This result shows that spectrum transfor-
mation just modifies colors of image and does not change its semantic informa-
tion.
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